In rectangle $ABCD$, $AB = 2BC$. Point $P$ is on side $AB$ such that $\angle APD = \angle DPC$. Find the measure of $\angle APD$.

GeometryGeometryRectangleTrigonometryAngle CalculationTangentQuadratic Equation
2025/3/29

1. Problem Description

In rectangle ABCDABCD, AB=2BCAB = 2BC. Point PP is on side ABAB such that APD=DPC\angle APD = \angle DPC. Find the measure of APD\angle APD.

2. Solution Steps

Let BC=aBC = a, so AB=CD=2aAB = CD = 2a. Let AP=xAP = x, so PB=2axPB = 2a - x.
Since APD=DPC\angle APD = \angle DPC, let APD=DPC=θ\angle APD = \angle DPC = \theta. Let BPC=α\angle BPC = \alpha. Then θ+θ+α=180\theta + \theta + \alpha = 180^{\circ}, so α=1802θ\alpha = 180^{\circ} - 2\theta.
In APD\triangle APD, tan(APD)=tanθ=ADAP=ax\tan(\angle APD) = \tan \theta = \frac{AD}{AP} = \frac{a}{x}.
In BPC\triangle BPC, tan(BPC)=tanα=tan(1802θ)=tan(2θ)=BCPB=a2ax\tan(\angle BPC) = \tan \alpha = \tan(180^{\circ} - 2\theta) = -\tan(2\theta) = \frac{BC}{PB} = \frac{a}{2a - x}.
tan(2θ)=2tanθ1tan2θ\tan(2\theta) = \frac{2\tan \theta}{1 - \tan^2 \theta}. Thus tan(2θ)=2tanθ1tan2θ=2tanθtan2θ1-\tan(2\theta) = \frac{-2\tan \theta}{1 - \tan^2 \theta} = \frac{2\tan \theta}{\tan^2 \theta - 1}.
Substituting tanθ=ax\tan \theta = \frac{a}{x}, we get 2axa2x21=2axa2x2x2=2axa2x2\frac{2\frac{a}{x}}{\frac{a^2}{x^2} - 1} = \frac{2\frac{a}{x}}{\frac{a^2 - x^2}{x^2}} = \frac{2ax}{a^2 - x^2}.
Then a2ax=2axa2x2\frac{a}{2a - x} = \frac{2ax}{a^2 - x^2}, so a(a2x2)=2ax(2ax)a(a^2 - x^2) = 2ax(2a - x).
Dividing by aa, we get a2x2=2x(2ax)=4ax2x2a^2 - x^2 = 2x(2a - x) = 4ax - 2x^2.
So x24ax+a2=0x^2 - 4ax + a^2 = 0. Using the quadratic formula,
x=4a±16a24a22=4a±12a22=4a±2a32=(2±3)ax = \frac{4a \pm \sqrt{16a^2 - 4a^2}}{2} = \frac{4a \pm \sqrt{12a^2}}{2} = \frac{4a \pm 2a\sqrt{3}}{2} = (2 \pm \sqrt{3})a.
Since x<2ax < 2a, we take the minus sign, so x=(23)ax = (2 - \sqrt{3})a.
Then tanθ=ax=a(23)a=123=2+3(23)(2+3)=2+343=2+3\tan \theta = \frac{a}{x} = \frac{a}{(2 - \sqrt{3})a} = \frac{1}{2 - \sqrt{3}} = \frac{2 + \sqrt{3}}{(2 - \sqrt{3})(2 + \sqrt{3})} = \frac{2 + \sqrt{3}}{4 - 3} = 2 + \sqrt{3}.
θ=arctan(2+3)=75\theta = \arctan(2 + \sqrt{3}) = 75^{\circ}.

3. Final Answer

The angle APD=75\angle APD = 75^{\circ}.

Related problems in "Geometry"

The problem consists of two parts: (a) A window is in the shape of a semi-circle with radius 70 cm. ...

CircleSemi-circlePerimeterBase ConversionNumber Systems
2025/6/11

The problem asks us to find the volume of a cylindrical litter bin in m³ to 2 decimal places (part a...

VolumeCylinderUnits ConversionProblem Solving
2025/6/10

We are given a triangle $ABC$ with $AB = 6$, $AC = 3$, and $\angle BAC = 120^\circ$. $AD$ is an angl...

TriangleAngle BisectorTrigonometryArea CalculationInradius
2025/6/10

The problem asks to find the values for I, JK, L, M, N, O, PQ, R, S, T, U, V, and W, based on the gi...

Triangle AreaInradiusGeometric Proofs
2025/6/10

In triangle $ABC$, $AB = 6$, $AC = 3$, and $\angle BAC = 120^{\circ}$. $D$ is the intersection of th...

TriangleLaw of CosinesAngle Bisector TheoremExternal Angle Bisector TheoremLength of SidesRatio
2025/6/10

A hunter on top of a tree sees an antelope at an angle of depression of $30^{\circ}$. The height of ...

TrigonometryRight TrianglesAngle of DepressionPythagorean Theorem
2025/6/10

A straight line passes through the points $(3, -2)$ and $(4, 5)$ and intersects the y-axis at $-23$....

Linear EquationsSlopeY-interceptCoordinate Geometry
2025/6/10

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8