The formula for the surface area of a solid of revolution about the x-axis is given by:
S=2π∫aby1+(dxdy)2dx In our case, y=x3/2, a=0, and b=2. We need to find dxdy: dxdy=23x1/2 Now, we square dxdy: (dxdy)2=(23x1/2)2=49x Then we add 1:
1+(dxdy)2=1+49x Substitute into the surface area formula:
S=2π∫02x3/21+49xdx Let u=1+49x, so x=94(u−1). Then dx=94du. When x=0, u=1. When x=2, u=1+49(2)=1+29=211. Thus, S=2π∫111/2(94(u−1))3/2u(94)du S=2π(94)5/2∫111/2(u−1)3/2u1/2du This integral is rather complicated. Let's use the approximation.
Rewrite the original integral
S=2π∫02x3/21+49xdx Let f(x)=x3/21+49x. Then using a calculator to approximate ∫02f(x)dx, we get ∫02x3/21+49xdx≈3.6176 S=2π(3.6176)≈22.72 Using WolframAlpha gives
2π∫02x3/21+(9x)/4dx=243π(17511+64) S=243π(17511+64)≈22.943