The problem asks us to evaluate three limits, $A$, $B$, and $C$. $A = \lim_{x\to1} \frac{1+x}{\sqrt{x^2+3}-2}$ $B = \lim_{x\to+\infty} \frac{x^2 + \ln x}{3x^2 - 1}$ $C = \lim_{x\to+\infty} \frac{x^3 - e^x}{2e^x + 3x + 1}$

AnalysisLimitsCalculusIndeterminate FormsRationalizationL'Hopital's Rule (implied)
2025/6/28

1. Problem Description

The problem asks us to evaluate three limits, AA, BB, and CC.
A=limx11+xx2+32A = \lim_{x\to1} \frac{1+x}{\sqrt{x^2+3}-2}
B=limx+x2+lnx3x21B = \lim_{x\to+\infty} \frac{x^2 + \ln x}{3x^2 - 1}
C=limx+x3ex2ex+3x+1C = \lim_{x\to+\infty} \frac{x^3 - e^x}{2e^x + 3x + 1}

2. Solution Steps

First, we evaluate AA:
A=limx11+xx2+32A = \lim_{x\to1} \frac{1+x}{\sqrt{x^2+3}-2}
When we substitute x=1x=1 we get 1+112+32=242=222=20\frac{1+1}{\sqrt{1^2+3}-2} = \frac{2}{\sqrt{4}-2} = \frac{2}{2-2} = \frac{2}{0}. This is an indeterminate form. We can rationalize the denominator.
A=limx11+xx2+32×x2+3+2x2+3+2=limx1(1+x)(x2+3+2)x2+34=limx1(1+x)(x2+3+2)x21=limx1(1+x)(x2+3+2)(x1)(x+1)=limx1x2+3+2x1A = \lim_{x\to1} \frac{1+x}{\sqrt{x^2+3}-2} \times \frac{\sqrt{x^2+3}+2}{\sqrt{x^2+3}+2} = \lim_{x\to1} \frac{(1+x)(\sqrt{x^2+3}+2)}{x^2+3-4} = \lim_{x\to1} \frac{(1+x)(\sqrt{x^2+3}+2)}{x^2-1} = \lim_{x\to1} \frac{(1+x)(\sqrt{x^2+3}+2)}{(x-1)(x+1)} = \lim_{x\to1} \frac{\sqrt{x^2+3}+2}{x-1}
When we substitute x=1x=1 we get 12+3+211=4+20=40\frac{\sqrt{1^2+3}+2}{1-1} = \frac{\sqrt{4}+2}{0} = \frac{4}{0}.
Since we approach 11 from both directions, we either approach \infty or -\infty.
For x>1x > 1, the expression is positive, so the limit is ++\infty.
Next, we evaluate BB:
B=limx+x2+lnx3x21B = \lim_{x\to+\infty} \frac{x^2 + \ln x}{3x^2 - 1}
We can divide both numerator and denominator by x2x^2.
B=limx+1+lnxx231x2B = \lim_{x\to+\infty} \frac{1 + \frac{\ln x}{x^2}}{3 - \frac{1}{x^2}}
Since limxlnxx2=0\lim_{x\to\infty} \frac{\ln x}{x^2} = 0 and limx1x2=0\lim_{x\to\infty} \frac{1}{x^2} = 0, we have
B=1+030=13B = \frac{1 + 0}{3 - 0} = \frac{1}{3}
Finally, we evaluate CC:
C=limx+x3ex2ex+3x+1C = \lim_{x\to+\infty} \frac{x^3 - e^x}{2e^x + 3x + 1}
We can divide both numerator and denominator by exe^x.
C=limx+x3ex12+3xex+1exC = \lim_{x\to+\infty} \frac{\frac{x^3}{e^x} - 1}{2 + \frac{3x}{e^x} + \frac{1}{e^x}}
Since limxx3ex=0\lim_{x\to\infty} \frac{x^3}{e^x} = 0, limx3xex=0\lim_{x\to\infty} \frac{3x}{e^x} = 0 and limx1ex=0\lim_{x\to\infty} \frac{1}{e^x} = 0, we have
C=012+0+0=12=12C = \frac{0 - 1}{2 + 0 + 0} = \frac{-1}{2} = -\frac{1}{2}

3. Final Answer

A=+A = +\infty
B=13B = \frac{1}{3}
C=12C = -\frac{1}{2}

Related problems in "Analysis"

The problem asks us to draw the tangent line to the curve $y = 3x^5 - 5x^4$ at the inflection point ...

CalculusDerivativesTangent LinesInflection PointsCurve Analysis
2025/6/29

The problem asks us to determine the concavity of the given curves and find their inflection points,...

CalculusDerivativesSecond DerivativeConcavityInflection Points
2025/6/29

The problem asks to find the following limits of the function $f(x)$ based on the given graph: $\lim...

LimitsFunctionsGraphical AnalysisAsymptotes
2025/6/28

The problem asks us to analyze the graph of the function $f(x)$, which is composed of a parabola, a ...

LimitsFunctionsPiecewise FunctionsAsymptotes
2025/6/28

The problem asks us to evaluate four limits based on the provided graph of a function $f(x)$. The li...

LimitsFunctionsGraph AnalysisOne-sided Limits
2025/6/28

The problem asks us to find the surface area of the solid generated by revolving the curve $y = x^{3...

CalculusSurface AreaSolid of RevolutionIntegrationDefinite IntegralApproximation
2025/6/28

The problem asks to find the volume of the solid generated by revolving the region bounded by the cu...

CalculusVolume of RevolutionIntegrationWasher Method
2025/6/28

The problem provides a function $f(x) = -x + 4 + \ln(\frac{x+1}{x-1})$ defined on the interval $(1, ...

LimitsDerivativesAsymptotesFunction AnalysisTangent LinesLogarithmic Functions
2025/6/28

Find the derivative of the function $g(x) = x^2 - 8\ln{x} - 1$.

CalculusDifferentiationDerivativesLogarithmic Functions
2025/6/28

We are asked to evaluate two integrals using the given substitutions. The integrals are: (a) $\int \...

IntegrationSubstitutionDefinite IntegralsIndefinite IntegralsCalculus
2025/6/27