Point $D$ lies on side $BC$ of triangle $ABC$. $DC = 2BD$. Given that $\angle ABC = 45^{\circ}$ and $\angle ADC = 60^{\circ}$, find the remaining angles of triangle $ABC$.

GeometryTriangleAnglesLaw of SinesTrigonometry
2025/3/31

1. Problem Description

Point DD lies on side BCBC of triangle ABCABC. DC=2BDDC = 2BD. Given that ABC=45\angle ABC = 45^{\circ} and ADC=60\angle ADC = 60^{\circ}, find the remaining angles of triangle ABCABC.

2. Solution Steps

Let BAC=α\angle BAC = \alpha and ACB=γ\angle ACB = \gamma. Also let BD=xBD = x, which implies DC=2xDC = 2x, and thus BC=3xBC = 3x.
In ABD\triangle ABD, we have ADB=180ADC=18060=120\angle ADB = 180^{\circ} - \angle ADC = 180^{\circ} - 60^{\circ} = 120^{\circ}. Then BAD=180ABDADB=18045120=15\angle BAD = 180^{\circ} - \angle ABD - \angle ADB = 180^{\circ} - 45^{\circ} - 120^{\circ} = 15^{\circ}.
In ADC\triangle ADC, we have DAC=180ADCACD=18060γ=120γ\angle DAC = 180^{\circ} - \angle ADC - \angle ACD = 180^{\circ} - 60^{\circ} - \gamma = 120^{\circ} - \gamma.
Since BAC=BAD+DAC\angle BAC = \angle BAD + \angle DAC, we have α=15+120γ=135γ\alpha = 15^{\circ} + 120^{\circ} - \gamma = 135^{\circ} - \gamma.
Also, since the sum of the angles in ABC\triangle ABC is 180180^{\circ}, we have BAC+ABC+ACB=180\angle BAC + \angle ABC + \angle ACB = 180^{\circ}.
Therefore, α+45+γ=180\alpha + 45^{\circ} + \gamma = 180^{\circ}. Substituting α=135γ\alpha = 135^{\circ} - \gamma, we get 135γ+45+γ=180135^{\circ} - \gamma + 45^{\circ} + \gamma = 180^{\circ}.
The above equation simplifies to 180=180180^{\circ} = 180^{\circ}, which doesn't help us find γ\gamma.
Applying the Law of Sines in ABD\triangle ABD,
BDsin(BAD)=ADsin(ABD)\frac{BD}{\sin(\angle BAD)} = \frac{AD}{\sin(\angle ABD)}
xsin(15)=ADsin(45)\frac{x}{\sin(15^{\circ})} = \frac{AD}{\sin(45^{\circ})}
AD=xsin(45)sin(15)AD = \frac{x \sin(45^{\circ})}{\sin(15^{\circ})}
Applying the Law of Sines in ADC\triangle ADC,
DCsin(DAC)=ADsin(ACD)\frac{DC}{\sin(\angle DAC)} = \frac{AD}{\sin(\angle ACD)}
2xsin(120γ)=ADsin(γ)\frac{2x}{\sin(120^{\circ} - \gamma)} = \frac{AD}{\sin(\gamma)}
AD=2xsin(γ)sin(120γ)AD = \frac{2x \sin(\gamma)}{\sin(120^{\circ} - \gamma)}
Therefore, xsin(45)sin(15)=2xsin(γ)sin(120γ)\frac{x \sin(45^{\circ})}{\sin(15^{\circ})} = \frac{2x \sin(\gamma)}{\sin(120^{\circ} - \gamma)}.
sin(45)sin(15)=2sin(γ)sin(120γ)\frac{\sin(45^{\circ})}{\sin(15^{\circ})} = \frac{2 \sin(\gamma)}{\sin(120^{\circ} - \gamma)}
sin(120γ)sin(45)=2sin(γ)sin(15)\sin(120^{\circ} - \gamma) \sin(45^{\circ}) = 2 \sin(\gamma) \sin(15^{\circ})
Since sin(15)=624\sin(15^{\circ}) = \frac{\sqrt{6}-\sqrt{2}}{4} and sin(45)=22\sin(45^{\circ}) = \frac{\sqrt{2}}{2},
sin(120γ)22=2sin(γ)624\sin(120^{\circ} - \gamma) \frac{\sqrt{2}}{2} = 2 \sin(\gamma) \frac{\sqrt{6}-\sqrt{2}}{4}
sin(120γ)22=sin(γ)622\sin(120^{\circ} - \gamma) \frac{\sqrt{2}}{2} = \sin(\gamma) \frac{\sqrt{6}-\sqrt{2}}{2}
sin(120γ)2=sin(γ)(62)\sin(120^{\circ} - \gamma) \sqrt{2} = \sin(\gamma) (\sqrt{6}-\sqrt{2})
sin(120γ)=sin(γ)(31)\sin(120^{\circ} - \gamma) = \sin(\gamma) (\sqrt{3}-1)
sin(120)cos(γ)cos(120)sin(γ)=sin(γ)(31)\sin(120^{\circ}) \cos(\gamma) - \cos(120^{\circ}) \sin(\gamma) = \sin(\gamma) (\sqrt{3}-1)
32cos(γ)+12sin(γ)=sin(γ)(31)\frac{\sqrt{3}}{2} \cos(\gamma) + \frac{1}{2} \sin(\gamma) = \sin(\gamma) (\sqrt{3}-1)
3cos(γ)+sin(γ)=2sin(γ)(31)\sqrt{3} \cos(\gamma) + \sin(\gamma) = 2 \sin(\gamma) (\sqrt{3}-1)
3cos(γ)=sin(γ)(2321)=sin(γ)(233)\sqrt{3} \cos(\gamma) = \sin(\gamma) (2\sqrt{3}-2-1) = \sin(\gamma) (2\sqrt{3}-3)
tan(γ)=3233=323323+323+3=6+33129=6+333=2+3\tan(\gamma) = \frac{\sqrt{3}}{2\sqrt{3}-3} = \frac{\sqrt{3}}{2\sqrt{3}-3} \cdot \frac{2\sqrt{3}+3}{2\sqrt{3}+3} = \frac{6+3\sqrt{3}}{12-9} = \frac{6+3\sqrt{3}}{3} = 2+\sqrt{3}
γ=75\gamma = 75^{\circ}
α=135γ=13575=60\alpha = 135^{\circ} - \gamma = 135^{\circ} - 75^{\circ} = 60^{\circ}

3. Final Answer

BAC=60\angle BAC = 60^{\circ}, ACB=75\angle ACB = 75^{\circ}

Related problems in "Geometry"

The problem states that the size of each interior angle of a regular polygon is $135^\circ$. We need...

PolygonsRegular PolygonsInterior AnglesExterior AnglesRotational Symmetry
2025/6/9

Y is 60 km away from X on a bearing of $135^{\circ}$. Z is 80 km away from X on a bearing of $225^{\...

TrigonometryBearingsCosine RuleRight Triangles
2025/6/8

The cross-section of a railway tunnel is shown. The length of the base $AB$ is 100 m, and the radius...

PerimeterArc LengthCircleRadius
2025/6/8

We are given a quadrilateral ABCD with the following angle measures: $\angle ABC = 14^{\circ}$, $\an...

QuadrilateralAnglesAngle SumReflex Angle
2025/6/8

The problem asks us to find the size of angle $d$ in the given diagram. The diagram shows a quadrila...

QuadrilateralsAnglesExterior AnglesInterior Angles
2025/6/8

The problem is to find the size of angle DAB in a quadrilateral ABCD. We are given that angle D = $8...

QuadrilateralAnglesGeometric Proof
2025/6/8

The problem asks to find the size of angle $a$ in the given quadrilateral. The other angles in the q...

QuadrilateralsAnglesPolygon Interior Angles
2025/6/8

We are given a triangle $ABD$ with a smaller triangle $DEC$ inside. Triangle $DEC$ is equilateral. A...

TrianglesAnglesEquilateral TriangleAngle Calculation
2025/6/8

We are given a triangle $ABC$ with a smaller equilateral triangle $DEC$ inside it. The angle $BAC$ i...

TrianglesAnglesGeometric ProofsEquilateral Triangle
2025/6/8

The problem states that triangle $DEC$ is an equilateral triangle and angle $BAC$ is $50$ degrees. T...

TrianglesAnglesEquilateral TriangleAngle Sum PropertySupplementary Angles
2025/6/8