The problem asks to find $y'$ (the derivative of $y$ with respect to $x$) for two equations: a) $x^y = y^x$ b) $(\cosh(x))^y = y^{\cosh(x)}$

AnalysisDifferentiationImplicit DifferentiationTranscendental Functions
2025/3/10

1. Problem Description

The problem asks to find yy' (the derivative of yy with respect to xx) for two equations:
a) xy=yxx^y = y^x
b) (cosh(x))y=ycosh(x)(\cosh(x))^y = y^{\cosh(x)}

2. Solution Steps

a) xy=yxx^y = y^x
Take the natural logarithm of both sides:
yln(x)=xln(y)y \ln(x) = x \ln(y)
Differentiate both sides with respect to xx using the product rule:
ddx(yln(x))=ddx(xln(y))\frac{d}{dx} (y \ln(x)) = \frac{d}{dx} (x \ln(y))
yln(x)+y1x=1ln(y)+x1yyy' \ln(x) + y \cdot \frac{1}{x} = 1 \cdot \ln(y) + x \cdot \frac{1}{y} \cdot y'
yln(x)+yx=ln(y)+xyyy' \ln(x) + \frac{y}{x} = \ln(y) + \frac{x}{y} y'
yln(x)xyy=ln(y)yxy' \ln(x) - \frac{x}{y} y' = \ln(y) - \frac{y}{x}
y(ln(x)xy)=ln(y)yxy' (\ln(x) - \frac{x}{y}) = \ln(y) - \frac{y}{x}
y=ln(y)yxln(x)xyy' = \frac{\ln(y) - \frac{y}{x}}{\ln(x) - \frac{x}{y}}
y=xln(y)yxyln(x)xyy' = \frac{\frac{x \ln(y) - y}{x}}{\frac{y \ln(x) - x}{y}}
y=y(xln(y)y)x(yln(x)x)y' = \frac{y(x \ln(y) - y)}{x(y \ln(x) - x)}
Since xy=yxx^y = y^x, then yln(x)=xln(y)y \ln(x) = x \ln(y).
y=y(xln(y)y)x(xln(y)x)y' = \frac{y(x \ln(y) - y)}{x(x \ln(y) - x)}
y=y(yln(x)y)x(yln(x)x)y' = \frac{y(y \ln(x) - y)}{x(y \ln(x) - x)}
y=yxyln(x)yyln(x)xy' = \frac{y}{x} \frac{y \ln(x) - y}{y \ln(x) - x}
y=yxy(ln(x)1)yln(x)xy' = \frac{y}{x} \frac{y(\ln(x) - 1)}{y \ln(x) - x}
y=yxy(lnx1)xlnyxy' = \frac{y}{x} \frac{y (\ln x - 1)}{x \ln y - x}
y=yxy(lnx1)x(lny1)y' = \frac{y}{x} \frac{y (\ln x - 1)}{x (\ln y - 1)}
y=yxy(ln(x)1)x(ln(y)1)y' = \frac{y}{x} \frac{y(\ln(x) - 1)}{x(\ln(y) - 1)}
Let's simplify
y=ln(y)yxln(x)xy=xln(y)yxyyln(x)x=y(xln(y)y)x(yln(x)x)y' = \frac{\ln(y) - \frac{y}{x}}{\ln(x) - \frac{x}{y}} = \frac{x\ln(y) - y}{x} \cdot \frac{y}{y\ln(x) - x} = \frac{y(x\ln(y) - y)}{x(y\ln(x) - x)}
Since xy=yxx^y = y^x, xln(y)=yln(x)x\ln(y) = y\ln(x). Let A=xln(y)=yln(x)A = x\ln(y) = y\ln(x).
y=y(Ay)x(Ax)y' = \frac{y(A - y)}{x(A - x)}
b) (cosh(x))y=ycosh(x)(\cosh(x))^y = y^{\cosh(x)}
Take the natural logarithm of both sides:
yln(cosh(x))=cosh(x)ln(y)y \ln(\cosh(x)) = \cosh(x) \ln(y)
Differentiate both sides with respect to xx:
yln(cosh(x))+ysinh(x)cosh(x)=sinh(x)ln(y)+cosh(x)1yyy' \ln(\cosh(x)) + y \frac{\sinh(x)}{\cosh(x)} = \sinh(x) \ln(y) + \cosh(x) \frac{1}{y} y'
yln(cosh(x))+ytanh(x)=sinh(x)ln(y)+cosh(x)yyy' \ln(\cosh(x)) + y \tanh(x) = \sinh(x) \ln(y) + \frac{\cosh(x)}{y} y'
yln(cosh(x))cosh(x)yy=sinh(x)ln(y)ytanh(x)y' \ln(\cosh(x)) - \frac{\cosh(x)}{y} y' = \sinh(x) \ln(y) - y \tanh(x)
y(ln(cosh(x))cosh(x)y)=sinh(x)ln(y)ytanh(x)y' (\ln(\cosh(x)) - \frac{\cosh(x)}{y}) = \sinh(x) \ln(y) - y \tanh(x)
y=sinh(x)ln(y)ytanh(x)ln(cosh(x))cosh(x)yy' = \frac{\sinh(x) \ln(y) - y \tanh(x)}{\ln(\cosh(x)) - \frac{\cosh(x)}{y}}
y=y(sinh(x)ln(y)ytanh(x))yln(cosh(x))cosh(x)y' = \frac{y(\sinh(x) \ln(y) - y \tanh(x))}{y \ln(\cosh(x)) - \cosh(x)}

3. Final Answer

a)
y=y(xln(y)y)x(yln(x)x)y' = \frac{y(x \ln(y) - y)}{x(y \ln(x) - x)}
b)
y=y(sinh(x)ln(y)ytanh(x))yln(cosh(x))cosh(x)y' = \frac{y(\sinh(x) \ln(y) - y \tanh(x))}{y \ln(\cosh(x)) - \cosh(x)}

Related problems in "Analysis"

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29

We need to find the limit of the expression $\frac{2x^3 - 2x + 1}{x^2 + 4x - 5}$ as $x$ approaches $...

LimitsCalculusRational FunctionsPolynomial DivisionOne-sided Limits
2025/5/29

The problem is to solve the equation $\sin(x - \frac{\pi}{2}) = -\frac{\sqrt{2}}{2}$ for $x$.

TrigonometryTrigonometric EquationsSine FunctionPeriodicity
2025/5/29

We are asked to evaluate the limit: $\lim_{x \to +\infty} \frac{(2x-1)^3(x+2)^5}{x^8-1}$

LimitsCalculusAsymptotic Analysis
2025/5/29