Take the natural logarithm of both sides:
yln(x)=xln(y) Differentiate both sides with respect to x using the product rule: dxd(yln(x))=dxd(xln(y)) y′ln(x)+y⋅x1=1⋅ln(y)+x⋅y1⋅y′ y′ln(x)+xy=ln(y)+yxy′ y′ln(x)−yxy′=ln(y)−xy y′(ln(x)−yx)=ln(y)−xy y′=ln(x)−yxln(y)−xy y′=yyln(x)−xxxln(y)−y y′=x(yln(x)−x)y(xln(y)−y) Since xy=yx, then yln(x)=xln(y). y′=x(xln(y)−x)y(xln(y)−y) y′=x(yln(x)−x)y(yln(x)−y) y′=xyyln(x)−xyln(x)−y y′=xyyln(x)−xy(ln(x)−1) y′=xyxlny−xy(lnx−1) y′=xyx(lny−1)y(lnx−1) y′=xyx(ln(y)−1)y(ln(x)−1) Let's simplify
y′=ln(x)−yxln(y)−xy=xxln(y)−y⋅yln(x)−xy=x(yln(x)−x)y(xln(y)−y) Since xy=yx, xln(y)=yln(x). Let A=xln(y)=yln(x). y′=x(A−x)y(A−y) b) (cosh(x))y=ycosh(x) Take the natural logarithm of both sides:
yln(cosh(x))=cosh(x)ln(y) Differentiate both sides with respect to x: y′ln(cosh(x))+ycosh(x)sinh(x)=sinh(x)ln(y)+cosh(x)y1y′ y′ln(cosh(x))+ytanh(x)=sinh(x)ln(y)+ycosh(x)y′ y′ln(cosh(x))−ycosh(x)y′=sinh(x)ln(y)−ytanh(x) y′(ln(cosh(x))−ycosh(x))=sinh(x)ln(y)−ytanh(x) y′=ln(cosh(x))−ycosh(x)sinh(x)ln(y)−ytanh(x) y′=yln(cosh(x))−cosh(x)y(sinh(x)ln(y)−ytanh(x))