The problem consists of several math questions. I will answer the following questions: 1. i) If $\sqrt{72} + \sqrt{32} - 3\sqrt{18} = x\sqrt{2}$, find the value of $x$.

AlgebraSimplificationNumber Base ConversionQuadratic EquationsRadicalsAlgebraic Manipulation
2025/7/7

1. Problem Description

The problem consists of several math questions. I will answer the following questions:

1. i) If $\sqrt{72} + \sqrt{32} - 3\sqrt{18} = x\sqrt{2}$, find the value of $x$.

2. ii) Convert $413_7$ to a numeral in base

5.

3. i) Simplify $\frac{15}{\sqrt{75}} + (\sqrt{108} + \sqrt{432})$, leaving the answer in the form $a\sqrt{b}$, where $a$ and $b$ are positive integers.

4. ii) Find the quadratic equation whose roots are $-2q$ and $5q$.

5. i) Solve the equation $4x^2 - 16x + 15 = 0$.

6. ii) If $2N4_{seven} = 15N_{nine}$, find the value of $N$.

7. i) The truth set of $8 + 2x - x^2 = 0$ is $\{p, q\}$. Evaluate $p + q$.

8. ii) Given that $\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}} = x + y\sqrt{15}$, find the value of $(x + y)$.

2. Solution Steps

1. i)

72+32318=x2\sqrt{72} + \sqrt{32} - 3\sqrt{18} = x\sqrt{2}
362+162392=x2\sqrt{36 \cdot 2} + \sqrt{16 \cdot 2} - 3\sqrt{9 \cdot 2} = x\sqrt{2}
62+423(32)=x26\sqrt{2} + 4\sqrt{2} - 3(3\sqrt{2}) = x\sqrt{2}
62+4292=x26\sqrt{2} + 4\sqrt{2} - 9\sqrt{2} = x\sqrt{2}
(6+49)2=x2(6 + 4 - 9)\sqrt{2} = x\sqrt{2}
12=x21\sqrt{2} = x\sqrt{2}
x=1x = 1

2. ii)

Convert 4137413_7 to base 10:
4137=472+171+370=449+17+31=196+7+3=20610413_7 = 4 \cdot 7^2 + 1 \cdot 7^1 + 3 \cdot 7^0 = 4 \cdot 49 + 1 \cdot 7 + 3 \cdot 1 = 196 + 7 + 3 = 206_{10}
Now, convert 20610206_{10} to base 5:
206÷5=41R1206 \div 5 = 41 R 1
41÷5=8R141 \div 5 = 8 R 1
8÷5=1R38 \div 5 = 1 R 3
1÷5=0R11 \div 5 = 0 R 1
Reading the remainders upwards, we get 131151311_5.

3. i)

1575+(108+432)\frac{15}{\sqrt{75}} + (\sqrt{108} + \sqrt{432})
15253+(363+1443)\frac{15}{\sqrt{25 \cdot 3}} + (\sqrt{36 \cdot 3} + \sqrt{144 \cdot 3})
1553+(63+123)\frac{15}{5\sqrt{3}} + (6\sqrt{3} + 12\sqrt{3})
33+183\frac{3}{\sqrt{3}} + 18\sqrt{3}
333+183\frac{3\sqrt{3}}{3} + 18\sqrt{3}
3+183\sqrt{3} + 18\sqrt{3}
19319\sqrt{3}

4. ii)

Let the roots be 2q-2q and 5q5q.
Sum of roots: 2q+5q=3q-2q + 5q = 3q
Product of roots: 2q5q=10q2-2q \cdot 5q = -10q^2
The quadratic equation is x2(sum of roots)x+(product of roots)=0x^2 - (\text{sum of roots})x + (\text{product of roots}) = 0
x2(3q)x10q2=0x^2 - (3q)x - 10q^2 = 0

5. i)

4x216x+15=04x^2 - 16x + 15 = 0
4x210x6x+15=04x^2 - 10x - 6x + 15 = 0
2x(2x5)3(2x5)=02x(2x - 5) - 3(2x - 5) = 0
(2x3)(2x5)=0(2x - 3)(2x - 5) = 0
2x3=02x - 3 = 0 or 2x5=02x - 5 = 0
2x=32x = 3 or 2x=52x = 5
x=32x = \frac{3}{2} or x=52x = \frac{5}{2}

6. ii)

2N4seven=15Nnine2N4_{seven} = 15N_{nine}
272+N71+470=192+591+N902 \cdot 7^2 + N \cdot 7^1 + 4 \cdot 7^0 = 1 \cdot 9^2 + 5 \cdot 9^1 + N \cdot 9^0
249+7N+4=181+59+N2 \cdot 49 + 7N + 4 = 1 \cdot 81 + 5 \cdot 9 + N
98+7N+4=81+45+N98 + 7N + 4 = 81 + 45 + N
102+7N=126+N102 + 7N = 126 + N
6N=246N = 24
N=4N = 4

7. i)

8+2xx2=08 + 2x - x^2 = 0
x22x8=0x^2 - 2x - 8 = 0
(x4)(x+2)=0(x - 4)(x + 2) = 0
x=4x = 4 or x=2x = -2
Truth set {p,q}={4,2}\{p, q\} = \{4, -2\}
p+q=4+(2)=2p + q = 4 + (-2) = 2

8. ii)

3+55=x+y15\frac{\sqrt{3} + \sqrt{5}}{\sqrt{5}} = x + y\sqrt{15}
35+55=x+y15\frac{\sqrt{3}}{\sqrt{5}} + \frac{\sqrt{5}}{\sqrt{5}} = x + y\sqrt{15}
35+1=x+y15\frac{\sqrt{3}}{\sqrt{5}} + 1 = x + y\sqrt{15}
3555+1=x+y15\frac{\sqrt{3}\sqrt{5}}{\sqrt{5}\sqrt{5}} + 1 = x + y\sqrt{15}
155+1=x+y15\frac{\sqrt{15}}{5} + 1 = x + y\sqrt{15}
1+1515=x+y151 + \frac{1}{5}\sqrt{15} = x + y\sqrt{15}
x=1x = 1 and y=15y = \frac{1}{5}
x+y=1+15=65x + y = 1 + \frac{1}{5} = \frac{6}{5}

3. Final Answer

1. i) $x = 1$

2. ii) $413_7 = 1311_5$

3. i) $19\sqrt{3}$

4. ii) $x^2 - 3qx - 10q^2 = 0$

5. i) $x = \frac{3}{2}, \frac{5}{2}$

6. ii) $N = 4$

7. i) $p + q = 2$

8. ii) $x + y = \frac{6}{5}$