Let RA, RB, and RC be the reactions at supports A, B, and C, respectively. We need to find RB. First, consider the whole beam:
RA+RB+RC=10+2=12 kN Taking moments about point A:
6RB+10RC=10×4+2×10=40+20=60 6RB+10RC=60 3RB+5RC=30 Castigliano's theorem states that the partial derivative of the total strain energy with respect to a force is equal to the displacement in the direction of that force. Since support B is a rigid support, its displacement is zero. We introduce a fictitious force Q at point B. We set Q=RB. We need to express the bending moment as a function of x and Q. RA+RB+RC=10+2 becomes RA+Q+RC=12 3Q+5RC=30 5RC=30−3Q RC=6−53Q RA=12−Q−(6−53Q)=6−52Q Consider segment AB.
If 0<x<4, M=RAx=(6−52Q)x If 4<x<6, M=RAx−10(x−4)=(6−52Q)x−10(x−4)=(6−52Q−10)x+40=(−4−52Q)x+40 Consider segment BC.
If 0<x<4, M=RCx=(6−53Q)x ∂Q∂M for 0<x<4 in AB is −52x ∂Q∂M for 4<x<6 in AB is −52x ∂Q∂M for 0<x<4 in BC is −53x Using Castigliano's theorem:
ΔB=∫0LEIM∂Q∂Mdx=0 ∫04EI(6−52Q)x(−52x)dx+∫46EI(−4−52Q)x+40(−52x)dx+∫04EI(6−53Q)x(−53x)dx=0 EI×0=∫04(6−52Q)x(−52x)dx+∫46((−4−52Q)x+40)(−52x)dx+∫04(6−53Q)x(−53x)dx 0=∫04(−512x2+254Qx2)dx+∫46(58x2+254Qx2−580x)dx+∫04(−518x2+259Qx2)dx 0=[−54x3+754Qx3]04+[158x3+754Qx3−1080x2]46+[−56x3+253Qx3]04 0=(−54(64)+754Q(64))+(158(216−64)+754Q(216−64)−8(36−16))+(−56(64)+253Q(64)) 0=−5256+75256Q+158(152)+754Q(152)−8(20)−5384+25192Q 0=−5256+75256Q+151216+75608Q−160−5384+25192Q 0=(−5256+151216−160−5384)+(75256+75608+75576)Q 0=(−15768+151216−152400−151152)+(751440)Q 0=(15−3104)+(2548)Q 153104=2548Q Q=153104×4825=33104×485=14415520=9970≈107.78 kN This solution looks wrong because RB is far too large. I will try a simpler method using superposition, noting that the displacement at B must be zero.
Let RB be the reaction at B. Consider the beam AC loaded with 10 kN at 4 m from A and 2 kN at 10 m from A. Also, consider the beam AC loaded only with RB at B. The deflection at B due to the 10 kN and 2 kN must be equal to the upward deflection due to RB. Deflection at point B due to 10 kN:
δB1=6EILPbx(L2−b2−x2) Where P=10, L=10, x=6, a=4, b=6 δB1=6EI(10)10×6×4(102−62−42)=60EI40(100−36−16)=3EI2(48)=EI32 Deflection at point B due to 2 kN:
δB2=6EILPax(L2−a2−x2) Where P=2, L=10, x=6, a=4, b=6. (Using the other part of the formula as we are to the right of the load.) δB2=6EI(10)2×4×6(102−42−62)=60EI8(100−16−36)=15EI2(48)=5EI32 Total downward deflection at B:
δB=δB1+δB2=EI32+5EI32=5EI160+32=5EI192 Deflection at B due to RB: δB3=6EILPab(L2−a2−b2) where a=6, b=4 δB3=6EI(10)RB(6)(4)(102−62−42)=60EI24RB(100−36−16)=52EIRB(48)=596EIRB 5EI192=596EIRB RB=96192=2 kN