Castigliano's second theorem states that the partial derivative of the total strain energy U with respect to a force (or moment) at a point is equal to the deflection (or rotation) at that point in the direction of the force (or moment). In this case, we are looking for the reaction at the support B, so we will take the partial derivative of the strain energy with respect to the reaction force RB at B and set it equal to zero, since the deflection at B is zero. ∂RB∂U=0 First, we need to find the reactions at supports A and C in terms of RB. Let RA and RC be the vertical reactions at A and C, respectively. Applying the equations of static equilibrium: ∑Fy=0:RA+RB+RC−10−(10×2)=0 RA+RB+RC=30 ∑MA=0:RB(4)+RC(8)−10(4)−(10×2)(5)=0 4RB+8RC=40+100 4RB+8RC=140 RB+2RC=35 2RC=35−RB RC=235−RB Substituting RC into the first equation: RA+RB+235−RB=30 2RA+2RB+35−RB=60 2RA+RB=25 RA=225−RB Now, we will determine the bending moment equations for the beam. We have two segments: AB and BC.
Let x be the distance from A.
For segment AB (0≤x≤4): M1=RAx−0 M1=(225−RB)x For segment BC (4≤x≤8): M2=RAx+RB(x−4)−10(x−4)−22(x−4)2 M2=(225−RB)x+RB(x−4)−10(x−4)−(x−4)2 M2=225x−RBx+RBx−4RB−10x+40−x2+8x−16 M2=12.5x−2RBx+RBx−4RB−10x+40−x2+8x−16 M2=−x2+10.5x+2RBx−4RB+24 Now we apply Castigliano's theorem. Assuming EI is constant:
∂RB∂U=∫0LEIM∂RB∂Mdx=0 ∫04EIM1∂RB∂M1dx+∫48EIM2∂RB∂M2dx=0 ∂RB∂M1=∂RB∂(225−RBx)=−2x ∂RB∂M2=∂RB∂(−x2+10.5x+2RBx−4RB+24)=2x−4 Therefore:
∫04(225−RBx)(−2x)dx+∫48(−x2+10.5x+2RBx−4RB+24)(2x−4)dx=0 ∫04(−425x2+4RBx2)dx+∫48(−2x3+2x2+(4RB)x2−(2RBx)−10.5(4x)+4x2+4(2RB)x−16(2RB)−4x2+16(10.5)−96−24(2x)+96)dx=0 Integrating each term,
[−1225x3+12RBx3]04+[−x4/8+(2x3/3)+((RB/4)x3/3)−(RB(x2)/4)−21x2+(4(RB(x2))/4)+(33.6)x−6x2]48=0 [−1225(64)+12RB(64)]+[−x4/8+(2x3/3)+((RB/4)x3/3)−(RB(x2)/4)−21x2+(4(RB(x2))/4)+(33.6)x−6x2]48=0 Simplify the integration.
Solving the definite integrals:
−3400+316RB+[−8x4+32x3+12RBx3−4RBx2−23x2]48=0 −3400+316RB+((−512+31024+3512RB−16RB−96)−(−32+3128+316RB−4RB−24))=0 RB≈25.641kN