The problem requires simplifying the expression $(3ab - 2a^2 - 7) + (6 - 4a^2 - 2ba)$.

AlgebraAlgebraic SimplificationPolynomialsCombining Like Terms
2025/7/12

1. Problem Description

The problem requires simplifying the expression (3ab2a27)+(64a22ba)(3ab - 2a^2 - 7) + (6 - 4a^2 - 2ba).

2. Solution Steps

First, we can remove the parentheses:
3ab2a27+64a22ba3ab - 2a^2 - 7 + 6 - 4a^2 - 2ba.
Next, we combine like terms. Note that ba=abba = ab, so 2ba=2ab-2ba = -2ab:
3ab2a27+64a22ab3ab - 2a^2 - 7 + 6 - 4a^2 - 2ab.
Combining the abab terms, 3ab2ab=(32)ab=ab3ab - 2ab = (3-2)ab = ab.
Combining the a2a^2 terms, 2a24a2=(24)a2=6a2-2a^2 - 4a^2 = (-2-4)a^2 = -6a^2.
Combining the constant terms, 7+6=1-7 + 6 = -1.
So the expression becomes ab6a21ab - 6a^2 - 1.

3. Final Answer

ab6a21ab - 6a^2 - 1