First, rewrite the equation as:
dydx=(4x+y)21 Now, let v=4x+y. Then, differentiating with respect to y, we get: dydv=4dydx+1 Substituting dydx=v21 into the equation above, we have: dydv=v24+1=v24+v2 v2+4v2dv=dy Now, integrate both sides with respect to their respective variables:
∫v2+4v2dv=∫dy We can rewrite the integrand as:
v2+4v2=v2+4v2+4−4=1−v2+44 So, the integral becomes:
∫(1−v2+44)dv=∫dy ∫1dv−∫v2+44dv=∫dy v−4∫v2+221dv=y+C Recall that ∫x2+a21dx=a1arctan(ax)+C. In our case, a=2, so: v−4(21arctan(2v))=y+C v−2arctan(2v)=y+C Substituting v=4x+y back into the equation: 4x+y−2arctan(24x+y)=y+C 4x−2arctan(24x+y)=C