Simplify the expression $\sqrt{-6-2\sqrt{5}}$.

AlgebraSimplificationRadicalsComplex NumbersSquare Roots
2025/7/12

1. Problem Description

Simplify the expression 625\sqrt{-6-2\sqrt{5}}.

2. Solution Steps

First, we observe that the expression inside the square root is negative. We can rewrite the expression as:
625=(6+25)=16+25=i6+25\sqrt{-6-2\sqrt{5}} = \sqrt{-(6+2\sqrt{5})} = \sqrt{-1} \cdot \sqrt{6+2\sqrt{5}} = i \cdot \sqrt{6+2\sqrt{5}}
Now, we want to simplify 6+25\sqrt{6+2\sqrt{5}}. We look for two numbers aa and bb such that a+b=6a+b=6 and ab=5ab=5. We see that a=5a=5 and b=1b=1 satisfy these conditions. Therefore, we can write 6+256+2\sqrt{5} as (5+1)2(\sqrt{5} + 1)^2.
6+25=5+1+251=(5)2+12+251=(5+1)26 + 2\sqrt{5} = 5 + 1 + 2\sqrt{5 \cdot 1} = (\sqrt{5})^2 + 1^2 + 2 \cdot \sqrt{5} \cdot 1 = (\sqrt{5}+1)^2
So, 6+25=(5+1)2=5+1\sqrt{6+2\sqrt{5}} = \sqrt{(\sqrt{5}+1)^2} = \sqrt{5}+1.
Then, 625=i6+25=i(5+1)=i(5+1)\sqrt{-6-2\sqrt{5}} = i \sqrt{6+2\sqrt{5}} = i (\sqrt{5}+1) = i(\sqrt{5}+1).
Alternatively, one may have assumed there's a typo and the problem meant 625\sqrt{6-2\sqrt{5}}. In that case:
625=5+125=(5)2+1225=(51)26-2\sqrt{5} = 5+1-2\sqrt{5} = (\sqrt{5})^2 + 1^2 - 2\sqrt{5} = (\sqrt{5}-1)^2
625=(51)2=51\sqrt{6-2\sqrt{5}} = \sqrt{(\sqrt{5}-1)^2} = \sqrt{5}-1.
Based on the problem presented in the image, however, the presence of a negative sign makes 625\sqrt{-6-2\sqrt{5}} a complex number.

3. Final Answer

i(5+1)i(\sqrt{5}+1)