The problem has two parts. Part a: Calculate the sum $z = 1 + i + i^2 + i^3 + i^4 + \dots + i^{2017}$. Part b: Given $z_k = i^{2k} + i^{2k+1}$, prove that $z_k + z_{k+1} = 0$.

AlgebraComplex NumbersGeometric SeriesSeriesProofs
2025/7/12

1. Problem Description

The problem has two parts.
Part a: Calculate the sum z=1+i+i2+i3+i4++i2017z = 1 + i + i^2 + i^3 + i^4 + \dots + i^{2017}.
Part b: Given zk=i2k+i2k+1z_k = i^{2k} + i^{2k+1}, prove that zk+zk+1=0z_k + z_{k+1} = 0.

2. Solution Steps

Part a:
We have a geometric series with the first term a=1a = 1, common ratio r=ir = i, and n=2018n = 2018 terms. The formula for the sum of a geometric series is
Sn=a(1rn)1rS_n = \frac{a(1-r^n)}{1-r}.
In this case,
z=1(1i2018)1i=1(i2)10091i=1(1)10091i=1(1)1i=21iz = \frac{1(1-i^{2018})}{1-i} = \frac{1 - (i^2)^{1009}}{1-i} = \frac{1 - (-1)^{1009}}{1-i} = \frac{1 - (-1)}{1-i} = \frac{2}{1-i}.
To simplify, multiply the numerator and denominator by the conjugate of the denominator:
z=2(1+i)(1i)(1+i)=2(1+i)1i2=2(1+i)1(1)=2(1+i)2=1+iz = \frac{2(1+i)}{(1-i)(1+i)} = \frac{2(1+i)}{1 - i^2} = \frac{2(1+i)}{1 - (-1)} = \frac{2(1+i)}{2} = 1+i.
Part b:
We are given zk=i2k+i2k+1z_k = i^{2k} + i^{2k+1}.
We want to show that zk+zk+1=0z_k + z_{k+1} = 0.
First, let's find zk+1z_{k+1}:
zk+1=i2(k+1)+i2(k+1)+1=i2k+2+i2k+3z_{k+1} = i^{2(k+1)} + i^{2(k+1)+1} = i^{2k+2} + i^{2k+3}.
Now, let's calculate zk+zk+1z_k + z_{k+1}:
zk+zk+1=(i2k+i2k+1)+(i2k+2+i2k+3)=i2k+i2k+1+i2k+2+i2k+3z_k + z_{k+1} = (i^{2k} + i^{2k+1}) + (i^{2k+2} + i^{2k+3}) = i^{2k} + i^{2k+1} + i^{2k+2} + i^{2k+3}.
We can factor out i2ki^{2k}:
zk+zk+1=i2k(1+i+i2+i3)=i2k(1+i1i)=i2k(0)=0z_k + z_{k+1} = i^{2k}(1 + i + i^2 + i^3) = i^{2k}(1 + i - 1 - i) = i^{2k}(0) = 0.
Therefore, zk+zk+1=0z_k + z_{k+1} = 0.

3. Final Answer

a. z=1+iz = 1+i
b. zk+zk+1=0z_k + z_{k+1} = 0