We need to solve the system of simultaneous equations using Cramer's rule: $p + 2q - r = 9$ $2p - q + 3r = -2$ $3p + 2q + 3r = 9$

AlgebraLinear AlgebraSystems of EquationsCramer's RuleDeterminantsMatrices
2025/7/14

1. Problem Description

We need to solve the system of simultaneous equations using Cramer's rule:
p+2qr=9p + 2q - r = 9
2pq+3r=22p - q + 3r = -2
3p+2q+3r=93p + 2q + 3r = 9

2. Solution Steps

First, we calculate the determinant of the coefficient matrix:
D=121213323=1132322333+(1)2132=1(36)2(69)1(4(3))=92(3)7=9+67=10D = \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 3 & 2 & 3 \end{vmatrix} = 1 \cdot \begin{vmatrix} -1 & 3 \\ 2 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = 1(-3-6) - 2(6-9) - 1(4-(-3)) = -9 - 2(-3) - 7 = -9 + 6 - 7 = -10
Next, we calculate DpD_p by replacing the first column of DD with the constants on the right-hand side of the equations:
Dp=921213923=9132322393+(1)2192=9(36)2(627)1(4(9))=9(9)2(33)1(5)=81+665=20D_p = \begin{vmatrix} 9 & 2 & -1 \\ -2 & -1 & 3 \\ 9 & 2 & 3 \end{vmatrix} = 9 \cdot \begin{vmatrix} -1 & 3 \\ 2 & 3 \end{vmatrix} - 2 \cdot \begin{vmatrix} -2 & 3 \\ 9 & 3 \end{vmatrix} + (-1) \cdot \begin{vmatrix} -2 & -1 \\ 9 & 2 \end{vmatrix} = 9(-3-6) - 2(-6-27) - 1(-4-(-9)) = 9(-9) - 2(-33) - 1(5) = -81 + 66 - 5 = -20
Then, we calculate DqD_q by replacing the second column of DD with the constants on the right-hand side of the equations:
Dq=191223393=1239392333+(1)2239=1(627)9(69)1(18(6))=339(3)24=33+2724=30D_q = \begin{vmatrix} 1 & 9 & -1 \\ 2 & -2 & 3 \\ 3 & 9 & 3 \end{vmatrix} = 1 \cdot \begin{vmatrix} -2 & 3 \\ 9 & 3 \end{vmatrix} - 9 \cdot \begin{vmatrix} 2 & 3 \\ 3 & 3 \end{vmatrix} + (-1) \cdot \begin{vmatrix} 2 & -2 \\ 3 & 9 \end{vmatrix} = 1(-6-27) - 9(6-9) - 1(18-(-6)) = -33 - 9(-3) - 24 = -33 + 27 - 24 = -30
Then, we calculate DrD_r by replacing the third column of DD with the constants on the right-hand side of the equations:
Dr=129212329=1122922239+92132=1(9(4))2(18(6))+9(4(3))=1(5)2(24)+9(7)=548+63=10D_r = \begin{vmatrix} 1 & 2 & 9 \\ 2 & -1 & -2 \\ 3 & 2 & 9 \end{vmatrix} = 1 \cdot \begin{vmatrix} -1 & -2 \\ 2 & 9 \end{vmatrix} - 2 \cdot \begin{vmatrix} 2 & -2 \\ 3 & 9 \end{vmatrix} + 9 \cdot \begin{vmatrix} 2 & -1 \\ 3 & 2 \end{vmatrix} = 1(-9-(-4)) - 2(18-(-6)) + 9(4-(-3)) = 1(-5) - 2(24) + 9(7) = -5 - 48 + 63 = 10
Using Cramer's rule, we have:
p=DpD=2010=2p = \frac{D_p}{D} = \frac{-20}{-10} = 2
q=DqD=3010=3q = \frac{D_q}{D} = \frac{-30}{-10} = 3
r=DrD=1010=1r = \frac{D_r}{D} = \frac{10}{-10} = -1

3. Final Answer

p=2p = 2, q=3q = 3, r=1r = -1