First, we calculate the determinant of the coefficient matrix:
D=1232−12−133=1⋅−1233−2⋅2333+(−1)⋅23−12=1(−3−6)−2(6−9)−1(4−(−3))=−9−2(−3)−7=−9+6−7=−10 Next, we calculate Dp by replacing the first column of D with the constants on the right-hand side of the equations: Dp=9−292−12−133=9⋅−1233−2⋅−2933+(−1)⋅−29−12=9(−3−6)−2(−6−27)−1(−4−(−9))=9(−9)−2(−33)−1(5)=−81+66−5=−20 Then, we calculate Dq by replacing the second column of D with the constants on the right-hand side of the equations: Dq=1239−29−133=1⋅−2933−9⋅2333+(−1)⋅23−29=1(−6−27)−9(6−9)−1(18−(−6))=−33−9(−3)−24=−33+27−24=−30 Then, we calculate Dr by replacing the third column of D with the constants on the right-hand side of the equations: Dr=1232−129−29=1⋅−12−29−2⋅23−29+9⋅23−12=1(−9−(−4))−2(18−(−6))+9(4−(−3))=1(−5)−2(24)+9(7)=−5−48+63=10 Using Cramer's rule, we have:
p=DDp=−10−20=2 q=DDq=−10−30=3 r=DDr=−1010=−1