We need to solve two problems. a. Show that the function $f(x) = x^5 - 5x^4 + 5x^3 - 1$ has a maximum value when $x=1$ and $x=0$, and a minimum value when $x=3$. b. Solve the system of linear equations using Cramer's rule: $p + 2q - r = 9$ $2p - q + 3r = -2$ $3p + 2q + 3r = 9$

AlgebraCalculusDerivativesCritical PointsMaxima and MinimaLinear EquationsCramer's RuleDeterminants
2025/7/14

1. Problem Description

We need to solve two problems.
a. Show that the function f(x)=x55x4+5x31f(x) = x^5 - 5x^4 + 5x^3 - 1 has a maximum value when x=1x=1 and x=0x=0, and a minimum value when x=3x=3.
b. Solve the system of linear equations using Cramer's rule:
p+2qr=9p + 2q - r = 9
2pq+3r=22p - q + 3r = -2
3p+2q+3r=93p + 2q + 3r = 9

2. Solution Steps

a. To find the maximum and minimum values of the function f(x)=x55x4+5x31f(x) = x^5 - 5x^4 + 5x^3 - 1, we need to find its critical points by taking the first derivative and setting it equal to zero.
f(x)=5x420x3+15x2f'(x) = 5x^4 - 20x^3 + 15x^2
Set f(x)=0f'(x) = 0:
5x420x3+15x2=05x^4 - 20x^3 + 15x^2 = 0
5x2(x24x+3)=05x^2(x^2 - 4x + 3) = 0
5x2(x1)(x3)=05x^2(x-1)(x-3) = 0
The critical points are x=0,x=1,x=0, x=1, and x=3x=3.
Now, we need to find the second derivative to determine whether these critical points are local maxima or minima.
f(x)=20x360x2+30xf''(x) = 20x^3 - 60x^2 + 30x
Evaluate f(x)f''(x) at the critical points:
f(0)=20(0)360(0)2+30(0)=0f''(0) = 20(0)^3 - 60(0)^2 + 30(0) = 0. Since f(0)=0f''(0) = 0, the second derivative test is inconclusive at x=0x=0. We check the first derivative f(x)f'(x) around x=0x=0. For x<0x<0 close to 00, f(x)>0f'(x)>0 and for x>0x>0 close to 00, f(x)>0f'(x)>0. Thus, x=0x=0 is neither a local maximum nor a local minimum.
f(1)=20(1)360(1)2+30(1)=2060+30=10f''(1) = 20(1)^3 - 60(1)^2 + 30(1) = 20 - 60 + 30 = -10. Since f(1)<0f''(1) < 0, x=1x=1 is a local maximum.
f(3)=20(3)360(3)2+30(3)=20(27)60(9)+90=540540+90=90f''(3) = 20(3)^3 - 60(3)^2 + 30(3) = 20(27) - 60(9) + 90 = 540 - 540 + 90 = 90. Since f(3)>0f''(3) > 0, x=3x=3 is a local minimum.
The problem states that x=0x=0 is a maximum value, this is incorrect according to the second derivative test. Also, f(0)=1,f(1)=15+51=0,f(3)=355(34)+5(33)1=2435(81)+5(27)1=243405+1351=28f(0)=-1, f(1) = 1-5+5-1=0, f(3) = 3^5 - 5(3^4) + 5(3^3)-1 = 243 - 5(81) + 5(27) - 1 = 243 - 405 + 135 - 1 = -28.
Thus, f(1)>f(0)f(1) > f(0) so x=1x=1 yields the larger value.
b. To solve the system of linear equations using Cramer's rule:
p+2qr=9p + 2q - r = 9
2pq+3r=22p - q + 3r = -2
3p+2q+3r=93p + 2q + 3r = 9
We calculate the determinant of the coefficient matrix:
D=121213323=1((1)(3)(3)(2))2((2)(3)(3)(3))+(1)((2)(2)(1)(3))=1(36)2(69)1(4+3)=92(3)7=9+67=10D = \begin{vmatrix} 1 & 2 & -1 \\ 2 & -1 & 3 \\ 3 & 2 & 3 \end{vmatrix} = 1((-1)(3) - (3)(2)) - 2((2)(3) - (3)(3)) + (-1)((2)(2) - (-1)(3)) = 1(-3-6) - 2(6-9) - 1(4+3) = -9 - 2(-3) - 7 = -9 + 6 - 7 = -10
Now, we replace the first column with the constants to find DpD_p:
Dp=921213923=9((1)(3)(3)(2))2((2)(3)(3)(9))+(1)((2)(2)(1)(9))=9(36)2(627)1(4+9)=9(9)2(33)5=81+665=20D_p = \begin{vmatrix} 9 & 2 & -1 \\ -2 & -1 & 3 \\ 9 & 2 & 3 \end{vmatrix} = 9((-1)(3) - (3)(2)) - 2((-2)(3) - (3)(9)) + (-1)((-2)(2) - (-1)(9)) = 9(-3-6) - 2(-6-27) - 1(-4+9) = 9(-9) - 2(-33) - 5 = -81 + 66 - 5 = -20
Next, we replace the second column with the constants to find DqD_q:
Dq=191223393=1((2)(3)(3)(9))9((2)(3)(3)(3))+(1)((2)(9)(2)(3))=1(627)9(69)1(18+6)=339(3)24=33+2724=30D_q = \begin{vmatrix} 1 & 9 & -1 \\ 2 & -2 & 3 \\ 3 & 9 & 3 \end{vmatrix} = 1((-2)(3) - (3)(9)) - 9((2)(3) - (3)(3)) + (-1)((2)(9) - (-2)(3)) = 1(-6-27) - 9(6-9) - 1(18+6) = -33 - 9(-3) - 24 = -33 + 27 - 24 = -30
Finally, we replace the third column with the constants to find DrD_r:
Dr=129212329=1((1)(9)(2)(2))2((2)(9)(2)(3))+9((2)(2)(1)(3))=1(9+4)2(18+6)+9(4+3)=52(24)+9(7)=548+63=10D_r = \begin{vmatrix} 1 & 2 & 9 \\ 2 & -1 & -2 \\ 3 & 2 & 9 \end{vmatrix} = 1((-1)(9) - (-2)(2)) - 2((2)(9) - (-2)(3)) + 9((2)(2) - (-1)(3)) = 1(-9+4) - 2(18+6) + 9(4+3) = -5 - 2(24) + 9(7) = -5 - 48 + 63 = 10
Now we use Cramer's rule to solve for p,q,p, q, and rr:
p=DpD=2010=2p = \frac{D_p}{D} = \frac{-20}{-10} = 2
q=DqD=3010=3q = \frac{D_q}{D} = \frac{-30}{-10} = 3
r=DrD=1010=1r = \frac{D_r}{D} = \frac{10}{-10} = -1

3. Final Answer

a. f(x)=x55x4+5x31f(x) = x^5 - 5x^4 + 5x^3 - 1 has a local maximum at x=1x=1 and a local minimum at x=3x=3. The nature of the critical point at x=0x=0 cannot be determined from the second derivative test.
b. p=2,q=3,r=1p = 2, q = 3, r = -1