We are given several math problems. We need to find the determinant and inverse of matrices, solve a quadratic equation by completing the square, find the mean of numbers, and calculate the area and volume of figures. Specifically, we need to: 6. (a) Find the determinant of matrix $A = \begin{pmatrix} 3 & 2 & 4 \\ 3 & 1 & 3 \\ 1 & 4 & 1 \end{pmatrix}$ and matrix $B = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 5 & 2 \\ 2 & 1 & 4 \end{pmatrix}$. (b) Find the inverse of matrix A. 7. (a) (i) Use completing the square method to solve the equation $ax^2 + bx + c = 0$. (ii) Use the result in 7.(a)(i) above to find the roots of $4x^2 + 7x - 2 = 0$. (b) The mean of 6 numbers is 40. Three of the numbers sum up to be 90. What is the mean of the remaining 3 numbers? 8. (a) Calculate the area of the shaded portion in Fig. 2.1, where we have a triangle with base 8 cm, side 8 cm and the angle is 54°, and a semi-circle of radius 8 cm. (b) A tin of milk has a radius 6.5 cm and height 13 cm. Find, correct to 2 decimal places, the: (i) Total surface area of the tin. (ii) Volume of liquid in litres that will fill the tin (Take $\pi = \frac{22}{7}$).

AlgebraMatricesDeterminantsInverse MatricesQuadratic EquationsCompleting the SquareMeanGeometryAreaVolumeTrigonometry
2025/7/15

1. Problem Description

We are given several math problems. We need to find the determinant and inverse of matrices, solve a quadratic equation by completing the square, find the mean of numbers, and calculate the area and volume of figures.
Specifically, we need to:

6. (a) Find the determinant of matrix $A = \begin{pmatrix} 3 & 2 & 4 \\ 3 & 1 & 3 \\ 1 & 4 & 1 \end{pmatrix}$ and matrix $B = \begin{pmatrix} 4 & 2 & 3 \\ 1 & 5 & 2 \\ 2 & 1 & 4 \end{pmatrix}$.

(b) Find the inverse of matrix A.

7. (a) (i) Use completing the square method to solve the equation $ax^2 + bx + c = 0$.

(ii) Use the result in 7.(a)(i) above to find the roots of 4x2+7x2=04x^2 + 7x - 2 = 0.
(b) The mean of 6 numbers is
4

0. Three of the numbers sum up to be

9

0. What is the mean of the remaining 3 numbers?

8. (a) Calculate the area of the shaded portion in Fig. 2.1, where we have a triangle with base 8 cm, side 8 cm and the angle is 54°, and a semi-circle of radius 8 cm.

(b) A tin of milk has a radius 6.5 cm and height 13 cm. Find, correct to 2 decimal places, the:
(i) Total surface area of the tin.
(ii) Volume of liquid in litres that will fill the tin (Take π=227\pi = \frac{22}{7}).

2. Solution Steps

6. (a) (i) Determinant of A:

det(A)=3(1134)2(3131)+4(3411)=3(112)2(33)+4(121)=3(11)2(0)+4(11)=330+44=11det(A) = 3(1*1 - 3*4) - 2(3*1 - 3*1) + 4(3*4 - 1*1) = 3(1-12) - 2(3-3) + 4(12-1) = 3(-11) - 2(0) + 4(11) = -33 - 0 + 44 = 11
(ii) Determinant of B:
det(B)=4(5421)2(1422)+3(1152)=4(202)2(44)+3(110)=4(18)2(0)+3(9)=72027=45det(B) = 4(5*4 - 2*1) - 2(1*4 - 2*2) + 3(1*1 - 5*2) = 4(20-2) - 2(4-4) + 3(1-10) = 4(18) - 2(0) + 3(-9) = 72 - 0 - 27 = 45
(b) Inverse of A:
A=(324313141)A = \begin{pmatrix} 3 & 2 & 4 \\ 3 & 1 & 3 \\ 1 & 4 & 1 \end{pmatrix}
det(A)=11det(A) = 11
Cofactor matrix: C=(1101114110233)C = \begin{pmatrix} -11 & 0 & 11 \\ 14 & -1 & -10 \\ 2 & 3 & -3 \end{pmatrix}
Adjoint matrix: adj(A)=CT=(1114201311103)adj(A) = C^T = \begin{pmatrix} -11 & 14 & 2 \\ 0 & -1 & 3 \\ 11 & -10 & -3 \end{pmatrix}
A1=1det(A)adj(A)=111(1114201311103)=(11411211011131111011311)A^{-1} = \frac{1}{det(A)} adj(A) = \frac{1}{11} \begin{pmatrix} -11 & 14 & 2 \\ 0 & -1 & 3 \\ 11 & -10 & -3 \end{pmatrix} = \begin{pmatrix} -1 & \frac{14}{11} & \frac{2}{11} \\ 0 & -\frac{1}{11} & \frac{3}{11} \\ 1 & -\frac{10}{11} & -\frac{3}{11} \end{pmatrix}

7. (a) (i) Completing the square:

ax2+bx+c=0ax^2 + bx + c = 0
x2+bax+ca=0x^2 + \frac{b}{a}x + \frac{c}{a} = 0
(x+b2a)2(b2a)2+ca=0(x + \frac{b}{2a})^2 - (\frac{b}{2a})^2 + \frac{c}{a} = 0
(x+b2a)2=b24a2ca(x + \frac{b}{2a})^2 = \frac{b^2}{4a^2} - \frac{c}{a}
(x+b2a)2=b24ac4a2(x + \frac{b}{2a})^2 = \frac{b^2 - 4ac}{4a^2}
x+b2a=±b24ac4a2x + \frac{b}{2a} = \pm \sqrt{\frac{b^2 - 4ac}{4a^2}}
x=b2a±b24ac2ax = -\frac{b}{2a} \pm \frac{\sqrt{b^2 - 4ac}}{2a}
x=b±b24ac2ax = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}
(ii) 4x2+7x2=04x^2 + 7x - 2 = 0
a=4a = 4, b=7b = 7, c=2c = -2
x=7±724(4)(2)2(4)=7±49+328=7±818=7±98x = \frac{-7 \pm \sqrt{7^2 - 4(4)(-2)}}{2(4)} = \frac{-7 \pm \sqrt{49 + 32}}{8} = \frac{-7 \pm \sqrt{81}}{8} = \frac{-7 \pm 9}{8}
x1=7+98=28=14x_1 = \frac{-7 + 9}{8} = \frac{2}{8} = \frac{1}{4}
x2=798=168=2x_2 = \frac{-7 - 9}{8} = \frac{-16}{8} = -2
(b) Mean of 6 numbers is
4

0. Sum of 6 numbers is $6 * 40 = 240$.

Three numbers sum to
9

0. Remaining three numbers sum to $240 - 90 = 150$.

Mean of the remaining 3 numbers is 1503=50\frac{150}{3} = 50.

8. (a) Area of triangle = $\frac{1}{2}ab\sin(C) = \frac{1}{2} * 8 * 8 * \sin(54°) \approx \frac{1}{2} * 64 * 0.809 = 25.888$ cm$^2$

Area of semi-circle = 12πr2=1222782=1222764=7041450.286\frac{1}{2} \pi r^2 = \frac{1}{2} * \frac{22}{7} * 8^2 = \frac{1}{2} * \frac{22}{7} * 64 = \frac{704}{14} \approx 50.286 cm2^2
Total area = 25.888+50.28676.17425.888 + 50.286 \approx 76.174 cm2^2
Area of the shaded portion is approximately 76.1776.17 cm2^2.
(b) (i) Total surface area of the tin:
TSA=2πr(r+h)=22276.5(6.5+13)=22276.519.5=56437806.14TSA = 2\pi r (r + h) = 2 * \frac{22}{7} * 6.5 * (6.5 + 13) = 2 * \frac{22}{7} * 6.5 * 19.5 = \frac{5643}{7} \approx 806.14 cm2^2
(ii) Volume of the tin:
V=πr2h=227(6.5)213=22742.2513=12024.571717.79V = \pi r^2 h = \frac{22}{7} * (6.5)^2 * 13 = \frac{22}{7} * 42.25 * 13 = \frac{12024.5}{7} \approx 1717.79 cm3^3
11 litre =1000= 1000 cm3^3
Volume in litres =1717.7910001.72= \frac{1717.79}{1000} \approx 1.72 litres.

3. Final Answer

6. (a) (i) $det(A) = 11$

(ii) det(B)=45det(B) = 45
(b) A1=(11411211011131111011311)A^{-1} = \begin{pmatrix} -1 & \frac{14}{11} & \frac{2}{11} \\ 0 & -\frac{1}{11} & \frac{3}{11} \\ 1 & -\frac{10}{11} & -\frac{3}{11} \end{pmatrix}

7. (a) (i) $x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$

(ii) x=14x = \frac{1}{4} and x=2x = -2
(b) The mean of the remaining 3 numbers is
5
0.

8. (a) Area of the shaded portion is approximately $76.17$ cm$^2$.

(b) (i) Total surface area of the tin is approximately 806.14806.14 cm2^2.
(ii) Volume of liquid in litres that will fill the tin is approximately 1.721.72 litres.