The problem consists of five questions: 1. Find the percentage error in measured length, calculated perimeter, and calculated area of a square, given the actual side length and the measured side length.

AlgebraPercentage ErrorLinear EquationsExponentsLogarithmsArithmetic ProgressionStatisticsMeanVarianceCalculusDefinite IntegralConeGeometry
2025/7/15

1. Problem Description

The problem consists of five questions:

1. Find the percentage error in measured length, calculated perimeter, and calculated area of a square, given the actual side length and the measured side length.

2. (a) Determine the initial number of men and women in a factory given that the total number of employees is 80 and doubling the number of men and tripling the number of women yields a total of 190 employees.

(b) Solve for xx in the equation 253x+2=52x+125^{3x+2} = 5^{2x+1}.

3. (a) Find the base radius of a cone given its volume ($565.7 \, cm^3$) and height ($15 \, cm$). Use $\pi = \frac{22}{7}$.

(b) Find the number of terms in an arithmetic progression, given the first, second, and last terms are 11, 14\frac{1}{4}, and 3323\frac{3}{2}, respectively.

4. Calculate the mean and variance of a given frequency distribution table.

5. (a) Evaluate the definite integral $\int_1^3 (4x^3 - 3x^2 + 2) \, dx$.

(b) Find the value of xx if log(5x6)log(2x3)=1\log(5x-6) - \log(2x-3) = 1.

2. Solution Steps

1. Percentage error in square measurements:

(i) Measured Length:
Actual length = 6.25 cm
Measured length = 6.12 cm
Absolute error = 6.256.12=0.13cm|6.25 - 6.12| = 0.13 \, cm
Percentage error = 0.136.25×100=2.08%\frac{0.13}{6.25} \times 100 = 2.08 \%
(ii) Calculated Perimeter:
Actual perimeter = 4×6.25=25cm4 \times 6.25 = 25 \, cm
Measured perimeter = 4×6.12=24.48cm4 \times 6.12 = 24.48 \, cm
Absolute error = 2524.48=0.52cm|25 - 24.48| = 0.52 \, cm
Percentage error = 0.5225×100=2.08%\frac{0.52}{25} \times 100 = 2.08 \%
(iii) Calculated Area:
Actual area = (6.25)2=39.0625cm2(6.25)^2 = 39.0625 \, cm^2
Measured area = (6.12)2=37.4544cm2(6.12)^2 = 37.4544 \, cm^2
Absolute error = 39.062537.4544=1.6081cm2|39.0625 - 37.4544| = 1.6081 \, cm^2
Percentage error = 1.608139.0625×100=4.116864%4.12%\frac{1.6081}{39.0625} \times 100 = 4.116864 \% \approx 4.12 \%

2. (a) Men and Women in the Factory:

Let mm be the initial number of men and ww be the initial number of women.
m+w=80m + w = 80
2m+3w=1902m + 3w = 190
Multiply the first equation by 2: 2m+2w=1602m + 2w = 160
Subtract this from the second equation: w=30w = 30
Substitute w=30w = 30 into the first equation: m+30=80m + 30 = 80, so m=50m = 50
Initial number of men = 50
Initial number of women = 30
(b) Solve for x:
253x+2=52x+125^{3x+2} = 5^{2x+1}
(52)3x+2=52x+1(5^2)^{3x+2} = 5^{2x+1}
56x+4=52x+15^{6x+4} = 5^{2x+1}
6x+4=2x+16x + 4 = 2x + 1
4x=34x = -3
x=34x = -\frac{3}{4}

3. (a) Radius of the Cone:

Volume of a cone, V=13πr2hV = \frac{1}{3} \pi r^2 h
565.7=13×227×r2×15565.7 = \frac{1}{3} \times \frac{22}{7} \times r^2 \times 15
565.7=1107×r2565.7 = \frac{110}{7} \times r^2
r2=565.7×7110=3959.9110=35.99936r^2 = \frac{565.7 \times 7}{110} = \frac{3959.9}{110} = 35.999 \approx 36
r=36=6cmr = \sqrt{36} = 6 \, cm
(b) Number of Terms in Arithmetic Progression:
a=1a = 1, a2=14a_2 = \frac{1}{4}, l=332=92l = 3\frac{3}{2} = \frac{9}{2}
d=a2a=141=34d = a_2 - a = \frac{1}{4} - 1 = -\frac{3}{4}
l=a+(n1)dl = a + (n-1)d
92=1+(n1)(34)\frac{9}{2} = 1 + (n-1)(-\frac{3}{4})
72=(n1)(34)\frac{7}{2} = (n-1)(-\frac{3}{4})
n1=72×(43)=143n-1 = \frac{7}{2} \times (-\frac{4}{3}) = -\frac{14}{3}
n=1143=3143=113n = 1 - \frac{14}{3} = \frac{3 - 14}{3} = -\frac{11}{3}
However, n must be a positive integer, so there must be a mistake in the question. Let's assume last term is 3 1/2 = 7/

2. $\frac{7}{2} = 1+(n-1)(-\frac{3}{4})$

52=(n1)(34)\frac{5}{2} = (n-1)(-\frac{3}{4})
n1=52(43)=103n-1 = \frac{5}{2} * (-\frac{4}{3}) = -\frac{10}{3}
n=1103=73n = 1 - \frac{10}{3} = -\frac{7}{3}
It is still negative and not an integer.
Let us consider the last term as 312=723\frac{1}{2} = \frac{7}{2}
72=1+(n1)(34)\frac{7}{2} = 1+(n-1)(-\frac{3}{4})
52=(n1)(34)\frac{5}{2} = (n-1)(-\frac{3}{4})
206=n1-\frac{20}{6} = n-1
n=103+1=73n = -\frac{10}{3} + 1 = -\frac{7}{3}

4. Mean and Variance of Frequency Distribution:

Midpoints: 5.5, 15.5, 25.5, 35.5, 45.5
Frequencies: 8, 10, 8, 22, 12
Total frequency = 60
Mean = (5.5×8)+(15.5×10)+(25.5×8)+(35.5×22)+(45.5×12)60=44+155+204+781+54660=173060=28.833328.83\frac{(5.5 \times 8) + (15.5 \times 10) + (25.5 \times 8) + (35.5 \times 22) + (45.5 \times 12)}{60} = \frac{44 + 155 + 204 + 781 + 546}{60} = \frac{1730}{60} = 28.8333 \approx 28.83
Variance = fi(xixˉ)2fi\frac{\sum f_i (x_i - \bar{x})^2}{\sum f_i}
Variance = 8(5.528.83)2+10(15.528.83)2+8(25.528.83)2+22(35.528.83)2+12(45.528.83)260\frac{8(5.5 - 28.83)^2 + 10(15.5 - 28.83)^2 + 8(25.5 - 28.83)^2 + 22(35.5 - 28.83)^2 + 12(45.5 - 28.83)^2}{60}
Variance = 8(23.33)2+10(13.33)2+8(3.33)2+22(6.67)2+12(16.67)260\frac{8(-23.33)^2 + 10(-13.33)^2 + 8(-3.33)^2 + 22(6.67)^2 + 12(16.67)^2}{60}
Variance = 8(544.29)+10(177.69)+8(11.09)+22(44.49)+12(277.89)60\frac{8(544.29) + 10(177.69) + 8(11.09) + 22(44.49) + 12(277.89)}{60}
Variance = 4354.32+1776.9+88.72+978.78+3334.6860=10533.460=175.5567175.56\frac{4354.32 + 1776.9 + 88.72 + 978.78 + 3334.68}{60} = \frac{10533.4}{60} = 175.5567 \approx 175.56

5. (a) Definite Integral:

13(4x33x2+2)dx=[x4x3+2x]13\int_1^3 (4x^3 - 3x^2 + 2) \, dx = [x^4 - x^3 + 2x]_1^3
=(3433+2(3))(1413+2(1))=(8127+6)(11+2)=602=58= (3^4 - 3^3 + 2(3)) - (1^4 - 1^3 + 2(1)) = (81 - 27 + 6) - (1 - 1 + 2) = 60 - 2 = 58
(b) Logarithmic Equation:
log(5x6)log(2x3)=1\log(5x-6) - \log(2x-3) = 1
log(5x62x3)=1\log(\frac{5x-6}{2x-3}) = 1
5x62x3=10\frac{5x-6}{2x-3} = 10
5x6=10(2x3)5x - 6 = 10(2x - 3)
5x6=20x305x - 6 = 20x - 30
15x=2415x = 24
x=2415=85=1.6x = \frac{24}{15} = \frac{8}{5} = 1.6

3. Final Answer

1. (i) 2.08% (ii) 2.08% (iii) 4.12%

2. (a) Men = 50, Women = 30 (b) $x = -\frac{3}{4}$

3. (a) 6 cm (b) Unable to determine

4. Mean = 28.83, Variance = 175.56

5. (a) 58 (b) $x = \frac{8}{5} = 1.6$