The problem is to find the determinant of the given matrix: $ \begin{bmatrix} 1 & 3 & 2 \\ 0 & 4 & 3 \\ 2 & -5 & 4 \end{bmatrix} $

AlgebraLinear AlgebraMatricesDeterminants
2025/7/15

1. Problem Description

The problem is to find the determinant of the given matrix:
[132043254] \begin{bmatrix} 1 & 3 & 2 \\ 0 & 4 & 3 \\ 2 & -5 & 4 \end{bmatrix}

2. Solution Steps

The determinant of a 3x3 matrix
[abcdefghi] \begin{bmatrix} a & b & c \\ d & e & f \\ g & h & i \end{bmatrix}
is given by:
det=a(eifh)b(difg)+c(dheg) det = a(ei - fh) - b(di - fg) + c(dh - eg)
In our case, we have:
a=1,b=3,c=2 a = 1, b = 3, c = 2
d=0,e=4,f=3 d = 0, e = 4, f = 3
g=2,h=5,i=4 g = 2, h = -5, i = 4
det=1(443(5))3(0432)+2(0(5)42) det = 1(4*4 - 3*(-5)) - 3(0*4 - 3*2) + 2(0*(-5) - 4*2)
det=1(16+15)3(06)+2(08) det = 1(16 + 15) - 3(0 - 6) + 2(0 - 8)
det=1(31)3(6)+2(8) det = 1(31) - 3(-6) + 2(-8)
det=31+1816 det = 31 + 18 - 16
det=4916 det = 49 - 16
det=33 det = 33

3. Final Answer

The determinant of the matrix is
3

3. So the answer is C.