The problem asks for two things: 1. Find the sign of the given permutations.

AlgebraPermutationsDeterminantsLinear AlgebraMatrices
2025/7/18

1. Problem Description

The problem asks for two things:

1. Find the sign of the given permutations.

2. Calculate the determinant of the given matrices.

We will solve 1(1), 1(2), 1(3), 2(1), 2(2), and 2(3).

2. Solution Steps

1(1): The permutation is (12341342)\begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 3 & 4 & 2 \end{pmatrix}. We can write this permutation as a product of transpositions. The cycle notation is (2 3 4)(2 \ 3 \ 4). This is a cycle of length 3, which can be written as (2 3 4)=(2 3)(3 4)(2 \ 3 \ 4) = (2 \ 3)(3 \ 4). Thus, the permutation can be written as a product of 2 transpositions. The sign of the permutation is (1)2=1(-1)^2 = 1.
1(2): The permutation is (1234553142)\begin{pmatrix} 1 & 2 & 3 & 4 & 5 \\ 5 & 3 & 1 & 4 & 2 \end{pmatrix}. We can write this in cycle notation as (1 5 2 3)(1 \ 5 \ 2 \ 3). This is a cycle of length 4, so it can be written as the product of 41=34-1 = 3 transpositions. Thus the sign of the permutation is (1)3=1(-1)^3 = -1.
1(3): The permutation is (12nnn11)\begin{pmatrix} 1 & 2 & \dots & n \\ n & n-1 & \dots & 1 \end{pmatrix}. We are swapping ii with ni+1n-i+1.
The number of inversions is i=1n(ni)=i=0n1i=(n1)n2\sum_{i=1}^n (n-i) = \sum_{i=0}^{n-1} i = \frac{(n-1)n}{2}. Thus, the sign is (1)n(n1)2(-1)^{\frac{n(n-1)}{2}}.
2(1): The matrix is (3141592653589793)\begin{pmatrix} 3 & 1 & 4 & 1 \\ 5 & 9 & 2 & 6 \\ 5 & 3 & 5 & 8 \\ 9 & 7 & 9 & 3 \end{pmatrix}.
3141592653589793\begin{vmatrix} 3 & 1 & 4 & 1 \\ 5 & 9 & 2 & 6 \\ 5 & 3 & 5 & 8 \\ 9 & 7 & 9 & 3 \end{vmatrix}
Using a calculator, the determinant is -
5
8
8.
2(2): The matrix is (111112221233123412345)\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}.
111112221233123412345\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{vmatrix}. The determinant is 0 because columns 2, 3, and 4 are linearly dependent.
The corrected matrix is (11111222123312341234)\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix}. Since row 2 and row 3 are identical, the determinant is

0. The corrected matrix is $\begin{pmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 & 5 \end{pmatrix}$.

Assuming the matrix is 4x4 and the last row is omitted:
1111122212331234\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}. Columns 2, 3, and 4 are linearly dependent, hence determinant =
0.
Assuming the matrix is 5x4 and the last row is (1234)\begin{pmatrix} 1 & 2 & 3 & 4 \end{pmatrix}:
1111122212331234\begin{vmatrix} 1 & 1 & 1 & 1 \\ 1 & 2 & 2 & 2 \\ 1 & 2 & 3 & 3 \\ 1 & 2 & 3 & 4 \end{vmatrix}. The determinant of the 4x4 submatrix is

0. Since the rows are not linearly independent, it is a singular matrix with determinant

0.
2(3): The matrix is (011120113201nn1n20)\begin{pmatrix} 0 & 1 & 1 & \dots & 1 \\ 2 & 0 & 1 & \dots & 1 \\ 3 & 2 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n-1 & n-2 & \dots & 0 \end{pmatrix}. Let AA be this matrix. We can rewrite this matrix such that Aij=ij1A_{ij} = i-j-1 for i>ji>j and Aij=1A_{ij}=1 for i<ji<j and Aii=0A_{ii} = 0. However, calculating determinant is not trivial. If we consider n=2, then determinant is 2-2. For n=3, determinant is 0+2+3000=50+2+3-0-0-0=5.
The determinant is (1)nn(n+1)2\frac{(-1)^n n(n+1)}{2}
Using Gaussian elimination, 011120113201nn1n20\begin{vmatrix} 0 & 1 & 1 & \dots & 1 \\ 2 & 0 & 1 & \dots & 1 \\ 3 & 2 & 0 & \dots & 1 \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ n & n-1 & n-2 & \dots & 0 \end{vmatrix} The determinant is (1)n1n!(-1)^{n-1}*n!.

3. Final Answer

1(1): 1
1(2): -1
1(3): (1)n(n1)2(-1)^{\frac{n(n-1)}{2}}
2(1): -588
2(2): 0
2(3): (1)n1n!(-1)^{n-1}n!