The problem asks to expand and simplify the expression $(2a+3)(3a-4)$.

AlgebraAlgebraic ExpressionsExpansionSimplificationDistributive Property
2025/4/3

1. Problem Description

The problem asks to expand and simplify the expression (2a+3)(3a4)(2a+3)(3a-4).

2. Solution Steps

To expand the expression (2a+3)(3a4)(2a+3)(3a-4), we use the distributive property (also known as the FOIL method):
(A+B)(C+D)=AC+AD+BC+BD(A+B)(C+D) = AC + AD + BC + BD
In this case, A=2aA = 2a, B=3B = 3, C=3aC = 3a, and D=4D = -4. Therefore:
(2a+3)(3a4)=(2a)(3a)+(2a)(4)+(3)(3a)+(3)(4)(2a+3)(3a-4) = (2a)(3a) + (2a)(-4) + (3)(3a) + (3)(-4)
(2a+3)(3a4)=6a28a+9a12(2a+3)(3a-4) = 6a^2 - 8a + 9a - 12
Now, we combine the like terms:
8a+9a=a-8a + 9a = a
So, the simplified expression is:
6a2+a126a^2 + a - 12

3. Final Answer

6a2+a126a^2 + a - 12