We are asked to solve four problems: (a) Expand and simplify the expression $6(2y-3) - 5(y+1)$. (b) Find the value of $q$ in the equation $3^q \times \frac{1}{27} = 81$. (c) Find the exact value of $8^{\frac{2}{3}} \times 49^{-\frac{1}{2}}$. (d) Factorise the expression $9x^2 - 64y^2$.

AlgebraAlgebraic SimplificationExponentsDifference of SquaresEquationsFactorization
2025/7/22

1. Problem Description

We are asked to solve four problems:
(a) Expand and simplify the expression 6(2y3)5(y+1)6(2y-3) - 5(y+1).
(b) Find the value of qq in the equation 3q×127=813^q \times \frac{1}{27} = 81.
(c) Find the exact value of 823×49128^{\frac{2}{3}} \times 49^{-\frac{1}{2}}.
(d) Factorise the expression 9x264y29x^2 - 64y^2.

2. Solution Steps

(a) Expand and simplify 6(2y3)5(y+1)6(2y-3) - 5(y+1):
First, distribute the 6 and the -5:
6(2y3)=12y186(2y-3) = 12y - 18
5(y+1)=5y5-5(y+1) = -5y - 5
Now, combine the terms:
12y185y5=(12y5y)+(185)=7y2312y - 18 - 5y - 5 = (12y - 5y) + (-18 - 5) = 7y - 23
(b) Find the value of qq in the equation 3q×127=813^q \times \frac{1}{27} = 81:
We can rewrite the equation as:
3q×133=343^q \times \frac{1}{3^3} = 3^4
3q×33=343^q \times 3^{-3} = 3^4
3q3=343^{q-3} = 3^4
Since the bases are equal, we can equate the exponents:
q3=4q - 3 = 4
q=4+3=7q = 4 + 3 = 7
(c) Find the exact value of 823×49128^{\frac{2}{3}} \times 49^{-\frac{1}{2}}:
823=(813)2=(2)2=48^{\frac{2}{3}} = (8^{\frac{1}{3}})^2 = (2)^2 = 4
4912=14912=149=1749^{-\frac{1}{2}} = \frac{1}{49^{\frac{1}{2}}} = \frac{1}{\sqrt{49}} = \frac{1}{7}
So, 823×4912=4×17=478^{\frac{2}{3}} \times 49^{-\frac{1}{2}} = 4 \times \frac{1}{7} = \frac{4}{7}
(d) Factorise 9x264y29x^2 - 64y^2:
This is a difference of squares, so we can write it as:
9x264y2=(3x)2(8y)29x^2 - 64y^2 = (3x)^2 - (8y)^2
Using the formula a2b2=(a+b)(ab)a^2 - b^2 = (a+b)(a-b), we get:
(3x)2(8y)2=(3x+8y)(3x8y)(3x)^2 - (8y)^2 = (3x + 8y)(3x - 8y)

3. Final Answer

(a) 7y237y - 23
(b) 77
(c) 47\frac{4}{7}
(d) (3x+8y)(3x8y)(3x + 8y)(3x - 8y)