関数 $y = (x - 1)(x^2 + 1)(2x - 1)$ を微分して、$dy/dx$を求めよ。解析学微分関数の微分積の微分2025/7/291. 問題の内容関数 y=(x−1)(x2+1)(2x−1)y = (x - 1)(x^2 + 1)(2x - 1)y=(x−1)(x2+1)(2x−1) を微分して、dy/dxdy/dxdy/dxを求めよ。2. 解き方の手順積の微分公式を使って微分します。まず、u=(x−1)u = (x - 1)u=(x−1)、v=(x2+1)v = (x^2 + 1)v=(x2+1)、w=(2x−1)w = (2x - 1)w=(2x−1) とおくと、y=uvwy = uvwy=uvw となります。積の微分公式は次の通りです。dydx=dudxvw+udvdxw+uvdwdx\frac{dy}{dx} = \frac{du}{dx}vw + u\frac{dv}{dx}w + uv\frac{dw}{dx}dxdy=dxduvw+udxdvw+uvdxdwそれぞれの微分を計算します。dudx=d(x−1)dx=1\frac{du}{dx} = \frac{d(x - 1)}{dx} = 1dxdu=dxd(x−1)=1dvdx=d(x2+1)dx=2x\frac{dv}{dx} = \frac{d(x^2 + 1)}{dx} = 2xdxdv=dxd(x2+1)=2xdwdx=d(2x−1)dx=2\frac{dw}{dx} = \frac{d(2x - 1)}{dx} = 2dxdw=dxd(2x−1)=2これらの結果を積の微分公式に代入します。dydx=(1)(x2+1)(2x−1)+(x−1)(2x)(2x−1)+(x−1)(x2+1)(2)\frac{dy}{dx} = (1)(x^2 + 1)(2x - 1) + (x - 1)(2x)(2x - 1) + (x - 1)(x^2 + 1)(2)dxdy=(1)(x2+1)(2x−1)+(x−1)(2x)(2x−1)+(x−1)(x2+1)(2)これを展開して整理します。dydx=(2x3−x2+2x−1)+(x−1)(4x2−2x)+2(x3−x2+x−1)\frac{dy}{dx} = (2x^3 - x^2 + 2x - 1) + (x - 1)(4x^2 - 2x) + 2(x^3 - x^2 + x - 1)dxdy=(2x3−x2+2x−1)+(x−1)(4x2−2x)+2(x3−x2+x−1)dydx=(2x3−x2+2x−1)+(4x3−2x2−4x2+2x)+(2x3−2x2+2x−2)\frac{dy}{dx} = (2x^3 - x^2 + 2x - 1) + (4x^3 - 2x^2 - 4x^2 + 2x) + (2x^3 - 2x^2 + 2x - 2)dxdy=(2x3−x2+2x−1)+(4x3−2x2−4x2+2x)+(2x3−2x2+2x−2)dydx=2x3−x2+2x−1+4x3−6x2+2x+2x3−2x2+2x−2\frac{dy}{dx} = 2x^3 - x^2 + 2x - 1 + 4x^3 - 6x^2 + 2x + 2x^3 - 2x^2 + 2x - 2dxdy=2x3−x2+2x−1+4x3−6x2+2x+2x3−2x2+2x−2dydx=(2x3+4x3+2x3)+(−x2−6x2−2x2)+(2x+2x+2x)+(−1−2)\frac{dy}{dx} = (2x^3 + 4x^3 + 2x^3) + (-x^2 - 6x^2 - 2x^2) + (2x + 2x + 2x) + (-1 - 2)dxdy=(2x3+4x3+2x3)+(−x2−6x2−2x2)+(2x+2x+2x)+(−1−2)dydx=8x3−9x2+6x−3\frac{dy}{dx} = 8x^3 - 9x^2 + 6x - 3dxdy=8x3−9x2+6x−33. 最終的な答えdydx=8x3−9x2+6x−3\frac{dy}{dx} = 8x^3 - 9x^2 + 6x - 3dxdy=8x3−9x2+6x−3