The problem asks to evaluate the definite integral $I = \int_{0}^{\infty} \frac{\sin(x)}{x} dx$. This is a well-known improper integral.

AnalysisDefinite IntegralImproper IntegralLaplace TransformIntegrationTrigonometric Functions
2025/3/12

1. Problem Description

The problem asks to evaluate the definite integral I=0sin(x)xdxI = \int_{0}^{\infty} \frac{\sin(x)}{x} dx. This is a well-known improper integral.

2. Solution Steps

We can evaluate this integral using Laplace transforms. Define I(t)I(t) as follows:
I(t)=0etxsinxxdxI(t) = \int_0^{\infty} e^{-tx} \frac{\sin x}{x} dx
Differentiate with respect to tt:
dIdt=0t(etxsinxx)dx=0xetxsinxxdx=0etxsinxdx\frac{dI}{dt} = \int_0^{\infty} \frac{\partial}{\partial t} \left( e^{-tx} \frac{\sin x}{x} \right) dx = \int_0^{\infty} -xe^{-tx} \frac{\sin x}{x} dx = - \int_0^{\infty} e^{-tx} \sin x dx
We know that:
eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))+C\int e^{ax} \sin(bx) dx = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) + C
In our case, a=ta = -t and b=1b = 1, so
etxsin(x)dx=etxt2+1(tsin(x)cos(x))+C\int e^{-tx} \sin(x) dx = \frac{e^{-tx}}{t^2 + 1} (-t \sin(x) - \cos(x)) + C
Then,
dIdt=[etxt2+1(tsin(x)cos(x))]0=(01t2+1(t01))=1t2+1\frac{dI}{dt} = - \left[ \frac{e^{-tx}}{t^2 + 1} (-t \sin(x) - \cos(x)) \right]_0^{\infty} = - \left( 0 - \frac{1}{t^2 + 1} (-t \cdot 0 - 1) \right) = -\frac{1}{t^2 + 1}
Integrate with respect to tt:
I(t)=1t2+1dt=arctan(t)+CI(t) = \int -\frac{1}{t^2 + 1} dt = -\arctan(t) + C
Now, as tt \to \infty, I(t)0I(t) \to 0, so
0=arctan()+C=π2+C0 = -\arctan(\infty) + C = -\frac{\pi}{2} + C, which implies C=π2C = \frac{\pi}{2}.
Therefore, I(t)=arctan(t)+π2I(t) = -\arctan(t) + \frac{\pi}{2}.
We want to find I(0)=0sinxxdxI(0) = \int_0^{\infty} \frac{\sin x}{x} dx, so we evaluate I(t)I(t) at t=0t=0:
I(0)=arctan(0)+π2=0+π2=π2I(0) = -\arctan(0) + \frac{\pi}{2} = -0 + \frac{\pi}{2} = \frac{\pi}{2}.

3. Final Answer

π2\frac{\pi}{2}

Related problems in "Analysis"

We need to evaluate the limit of the expression $\frac{x-3}{1-\sqrt{4-x}}$ as $x$ approaches $3$.

LimitsCalculusIndeterminate FormsConjugateAlgebraic Manipulation
2025/7/11

We need to evaluate the limit: $\lim_{x\to 3} \frac{x-3}{1 - \sqrt{4-x}}$.

LimitsIndeterminate FormsConjugateRationalization
2025/7/11

We are asked to find the limit of the function $\frac{2x^2 + 3x + 4}{x-1}$ as $x$ approaches 1 from ...

LimitsCalculusFunctions
2025/7/8

The problem asks us to sketch the graphs of two functions: (1) $y = x\sqrt{4-x^2}$ (2) $y = e^{-x} +...

GraphingCalculusDerivativesMaxima and MinimaConcavityInflection PointsDomainSymmetry
2025/7/3

The problem asks to sketch the graph of the function $y = x\sqrt{4 - x^2}$.

CalculusFunction AnalysisDerivativesGraphingDomainCritical PointsLocal Maxima/MinimaOdd Functions
2025/7/3

We are asked to find the sum of the series $\frac{1}{2^2-1} + \frac{1}{4^2-1} + \frac{1}{6^2-1} + \d...

SeriesSummationPartial FractionsTelescoping Series
2025/7/3

The problem asks to evaluate several natural logarithm expressions. The expressions are: 1. $ln(\fra...

LogarithmsNatural LogarithmExponentsLogarithmic Properties
2025/7/3

The problem requires us to analyze a given graph of a function and determine the following: - The in...

Function AnalysisIncreasing and Decreasing IntervalsDomain and Range
2025/7/3

We are given a graph of a function and asked to find the intervals where the function is increasing,...

Function AnalysisIntervalsIncreasing/Decreasing/ConstantDomainRangeGraph Interpretation
2025/7/3

The problem asks us to identify the intervals where the given function is increasing and decreasing,...

Function AnalysisIncreasing and Decreasing IntervalsDomainGraph Interpretation
2025/7/3