The problem asks to evaluate the definite integral $I = \int_{0}^{\infty} \frac{\sin(x)}{x} dx$. This is a well-known improper integral.

AnalysisDefinite IntegralImproper IntegralLaplace TransformIntegrationTrigonometric Functions
2025/3/12

1. Problem Description

The problem asks to evaluate the definite integral I=0sin(x)xdxI = \int_{0}^{\infty} \frac{\sin(x)}{x} dx. This is a well-known improper integral.

2. Solution Steps

We can evaluate this integral using Laplace transforms. Define I(t)I(t) as follows:
I(t)=0etxsinxxdxI(t) = \int_0^{\infty} e^{-tx} \frac{\sin x}{x} dx
Differentiate with respect to tt:
dIdt=0t(etxsinxx)dx=0xetxsinxxdx=0etxsinxdx\frac{dI}{dt} = \int_0^{\infty} \frac{\partial}{\partial t} \left( e^{-tx} \frac{\sin x}{x} \right) dx = \int_0^{\infty} -xe^{-tx} \frac{\sin x}{x} dx = - \int_0^{\infty} e^{-tx} \sin x dx
We know that:
eaxsin(bx)dx=eaxa2+b2(asin(bx)bcos(bx))+C\int e^{ax} \sin(bx) dx = \frac{e^{ax}}{a^2 + b^2} (a \sin(bx) - b \cos(bx)) + C
In our case, a=ta = -t and b=1b = 1, so
etxsin(x)dx=etxt2+1(tsin(x)cos(x))+C\int e^{-tx} \sin(x) dx = \frac{e^{-tx}}{t^2 + 1} (-t \sin(x) - \cos(x)) + C
Then,
dIdt=[etxt2+1(tsin(x)cos(x))]0=(01t2+1(t01))=1t2+1\frac{dI}{dt} = - \left[ \frac{e^{-tx}}{t^2 + 1} (-t \sin(x) - \cos(x)) \right]_0^{\infty} = - \left( 0 - \frac{1}{t^2 + 1} (-t \cdot 0 - 1) \right) = -\frac{1}{t^2 + 1}
Integrate with respect to tt:
I(t)=1t2+1dt=arctan(t)+CI(t) = \int -\frac{1}{t^2 + 1} dt = -\arctan(t) + C
Now, as tt \to \infty, I(t)0I(t) \to 0, so
0=arctan()+C=π2+C0 = -\arctan(\infty) + C = -\frac{\pi}{2} + C, which implies C=π2C = \frac{\pi}{2}.
Therefore, I(t)=arctan(t)+π2I(t) = -\arctan(t) + \frac{\pi}{2}.
We want to find I(0)=0sinxxdxI(0) = \int_0^{\infty} \frac{\sin x}{x} dx, so we evaluate I(t)I(t) at t=0t=0:
I(0)=arctan(0)+π2=0+π2=π2I(0) = -\arctan(0) + \frac{\pi}{2} = -0 + \frac{\pi}{2} = \frac{\pi}{2}.

3. Final Answer

π2\frac{\pi}{2}

Related problems in "Analysis"

We need to find the average rate of change of the function $f(x) = \frac{x-5}{x+3}$ from $x = -2$ to...

Average Rate of ChangeFunctionsCalculus
2025/4/5

If a function $f(x)$ has a maximum at the point $(2, 4)$, what does the reciprocal of $f(x)$, which ...

CalculusFunction AnalysisMaxima and MinimaReciprocal Function
2025/4/5

We are given the function $f(x) = x^2 + 1$ and we want to determine the interval(s) in which its rec...

CalculusDerivativesFunction AnalysisIncreasing Functions
2025/4/5

We are given the function $f(x) = -2x + 3$. We want to find where the reciprocal function, $g(x) = \...

CalculusDerivativesIncreasing FunctionsReciprocal FunctionsAsymptotes
2025/4/5

We need to find the horizontal asymptote of the function $f(x) = \frac{2x - 7}{5x + 3}$.

LimitsAsymptotesRational Functions
2025/4/5

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1