Evaluate the expression $\tan \frac{5\pi}{4}$.

TrigonometryTrigonometryTangent FunctionAngle CalculationUnit CircleTrigonometric Identities
2025/3/12

1. Problem Description

Evaluate the expression tan5π4\tan \frac{5\pi}{4}.

2. Solution Steps

First, we can express 5π4\frac{5\pi}{4} as π+π4\pi + \frac{\pi}{4}.
Therefore, tan5π4=tan(π+π4)\tan \frac{5\pi}{4} = \tan (\pi + \frac{\pi}{4}).
Since the tangent function has a period of π\pi, we have tan(π+x)=tanx\tan (\pi + x) = \tan x.
Thus, tan(π+π4)=tanπ4\tan(\pi + \frac{\pi}{4}) = \tan \frac{\pi}{4}.
We know that tanπ4=1\tan \frac{\pi}{4} = 1.
Therefore, tan5π4=1\tan \frac{5\pi}{4} = 1.

3. Final Answer

1

Related problems in "Trigonometry"

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29

The problem asks to find a trigonometric ratio of an angle less than 45° that is equal to one of the...

Trigonometric IdentitiesTrigonometric RatiosAngle Conversion
2025/5/25

The problem asks to simplify the trigonometric expression: $\frac{sin(\frac{\pi}{4}) - 2tan(\frac{\p...

Trigonometric FunctionsSimplificationTrigonometric Identities
2025/5/22

We need to evaluate the expression $\frac{\sin(\frac{2\pi}{3}) + \cos(\frac{\pi}{4})}{\sin(\frac{\pi...

TrigonometryTrigonometric FunctionsUnit CircleExpression Evaluation
2025/5/22

The problem asks to find which trigonometric ratio is equivalent to a trigonometric ratio of an angl...

TrigonometryTrigonometric IdentitiesAngle ConversionSineCosineTangent
2025/5/19

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCotangentSimplification
2025/5/13