Evaluate the expression $\tan \frac{5\pi}{4}$.

TrigonometryTrigonometryTangent FunctionAngle CalculationUnit CircleTrigonometric Identities
2025/3/12

1. Problem Description

Evaluate the expression tan5π4\tan \frac{5\pi}{4}.

2. Solution Steps

First, we can express 5π4\frac{5\pi}{4} as π+π4\pi + \frac{\pi}{4}.
Therefore, tan5π4=tan(π+π4)\tan \frac{5\pi}{4} = \tan (\pi + \frac{\pi}{4}).
Since the tangent function has a period of π\pi, we have tan(π+x)=tanx\tan (\pi + x) = \tan x.
Thus, tan(π+π4)=tanπ4\tan(\pi + \frac{\pi}{4}) = \tan \frac{\pi}{4}.
We know that tanπ4=1\tan \frac{\pi}{4} = 1.
Therefore, tan5π4=1\tan \frac{5\pi}{4} = 1.

3. Final Answer

1

Related problems in "Trigonometry"

Simplify the trigonometric expression $\sin^2x + \sin x \cos^2 x$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

The problem is to simplify the expression $\sin^2(x) + \sin(x)\cos(x)$.

Trigonometric IdentitiesSimplificationSineCosine
2025/4/26

Solve the trigonometric equation: $\frac{\cos^3 x - \cos 3x}{\cos x} + \frac{\sin^3 x + \sin 3x}{\si...

Trigonometric EquationsTriple Angle FormulasTrigonometric IdentitiesSolution of Equations
2025/4/25

The problem requires us to prove the following trigonometric identity: $tan(x+y) - tan(x) - tan(y) =...

Trigonometric IdentitiesTangent Addition FormulaProof
2025/4/25

Prove the trigonometric identity: $2(\frac{1}{sin2x} + cot2x) = cot\frac{x}{2} - tan\frac{x}{2}$

Trigonometric IdentitiesProofSimplificationcotangenttangentsinecosine
2025/4/24

We are asked to simplify the expression: $\frac{\sin x + \sin 2x + \sin 3x}{\cos x + \cos 2x + \cos ...

TrigonometryTrigonometric IdentitiesSum-to-Product FormulasTangent FunctionEquation Solving
2025/4/22

We are asked to solve the trigonometric equation $\tan x + \cot x = 2(\sin 2x + \cos 2x)$.

Trigonometric EquationsTrigonometric IdentitiesSolution of Equations
2025/4/22

The problem asks to solve for $x$ in the equation $\sin(5 \times 21^{\circ}) = \cos(9^{\circ}) + \ta...

Trigonometric EquationsTrigonometric IdentitiesSineCosineTangentAngle Sum and Difference Identities
2025/4/21

The problem is to simplify the expression $\tan(x) \cot(9^\circ) + \tan(5x)$. I assume the question...

Trigonometric IdentitiesTangent FunctionCotangent FunctionSimplification
2025/4/21