We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\circ} \tan 47^{\circ}$.

TrigonometryTrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

1. Problem Description

We are asked to find the value of P=tan43tan44tan45tan46tan47P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\circ} \tan 47^{\circ}.

2. Solution Steps

We can use the fact that tan(90x)=cotx=1tanx\tan(90^{\circ} - x) = \cot x = \frac{1}{\tan x}.
Also, we know that tan45=1\tan 45^{\circ} = 1.
We can rewrite the expression as:
P=tan43tan44tan45tan46tan47P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\circ} \tan 47^{\circ}
P=tan43tan44(1)tan(9044)tan(9043)P = \tan 43^{\circ} \tan 44^{\circ} (1) \tan (90^{\circ} - 44^{\circ}) \tan (90^{\circ} - 43^{\circ})
P=tan43tan44tan(9044)tan(9043)P = \tan 43^{\circ} \tan 44^{\circ} \tan (90^{\circ} - 44^{\circ}) \tan (90^{\circ} - 43^{\circ})
Since tan(90x)=cotx\tan (90^{\circ} - x) = \cot x, we have
P=tan43tan44cot44cot43P = \tan 43^{\circ} \tan 44^{\circ} \cot 44^{\circ} \cot 43^{\circ}
Since cotx=1tanx\cot x = \frac{1}{\tan x}, we have
P=tan43tan441tan441tan43P = \tan 43^{\circ} \tan 44^{\circ} \frac{1}{\tan 44^{\circ}} \frac{1}{\tan 43^{\circ}}
P=tan43tan43tan44tan44P = \frac{\tan 43^{\circ}}{\tan 43^{\circ}} \frac{\tan 44^{\circ}}{\tan 44^{\circ}}
P=11=1P = 1 \cdot 1 = 1

3. Final Answer

The final answer is 1.

Related problems in "Trigonometry"

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29

The problem asks to find a trigonometric ratio of an angle less than 45° that is equal to one of the...

Trigonometric IdentitiesTrigonometric RatiosAngle Conversion
2025/5/25

The problem asks to simplify the trigonometric expression: $\frac{sin(\frac{\pi}{4}) - 2tan(\frac{\p...

Trigonometric FunctionsSimplificationTrigonometric Identities
2025/5/22

We need to evaluate the expression $\frac{\sin(\frac{2\pi}{3}) + \cos(\frac{\pi}{4})}{\sin(\frac{\pi...

TrigonometryTrigonometric FunctionsUnit CircleExpression Evaluation
2025/5/22

The problem asks to find which trigonometric ratio is equivalent to a trigonometric ratio of an angl...

TrigonometryTrigonometric IdentitiesAngle ConversionSineCosineTangent
2025/5/19

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCotangentSimplification
2025/5/13

The problem states that $5\cos{A} + 3 = 0$ and $180^\circ < A < 360^\circ$. We need to determine the...

TrigonometryTrigonometric IdentitiesUnit CircleQuadrant AnalysisSineCosineTangent
2025/5/12