The problem asks to find a trigonometric ratio of an angle less than 45° that is equal to one of the given trigonometric ratios. The given options are sin 63°, cos 82°, and tan 73°.

TrigonometryTrigonometric IdentitiesTrigonometric RatiosAngle Conversion
2025/5/25

1. Problem Description

The problem asks to find a trigonometric ratio of an angle less than 45° that is equal to one of the given trigonometric ratios. The given options are sin 63°, cos 82°, and tan 73°.

2. Solution Steps

We need to find an angle θ<45\theta < 45^\circ such that one of the following holds:
sin θ\theta = sin 63°
cos θ\theta = cos 82°
tan θ\theta = tan 73°
Using trigonometric identities:
sinx=sin(180x)\sin x = \sin (180^\circ - x). Therefore, sin63=sin(18063)=sin117\sin 63^\circ = \sin(180^\circ - 63^\circ) = \sin 117^\circ. But we are looking for angles less than 45 degrees.
Also, we know that cosx=sin(90x)\cos x = \sin (90^\circ - x).
Then, cos82=sin(9082)=sin8\cos 82^\circ = \sin (90^\circ - 82^\circ) = \sin 8^\circ.
Since 8<458^\circ < 45^\circ, cos82\cos 82^\circ is a trigonometric ratio of an angle less than 4545^\circ.
For the tangent function, tanx=cot(90x)=1tan(90x)\tan x = \cot (90^\circ - x) = \frac{1}{\tan (90^\circ - x)}. Therefore, tanx=1tan(90x)\tan x = \frac{1}{\tan(90 - x)}.
Thus, tan73=1tan(9073)=1tan17=cot17\tan 73^\circ = \frac{1}{\tan(90^\circ - 73^\circ)} = \frac{1}{\tan 17^\circ} = \cot 17^\circ. Also tan(x)=cot(90x)\tan(x) = \cot(90-x) so tan73=cot17\tan 73 = \cot 17. Since we are comparing to tan(θ)\tan(\theta) values where θ<45\theta<45, we need to convert to tan values.
cot17=tan(9017)=tan(73)\cot 17 = \tan(90-17) = \tan(73) which does not help us since 73>4573 > 45.
Therefore, cos82=sin8\cos 82^\circ = \sin 8^\circ. And 8<458^\circ < 45^\circ.

3. Final Answer

cos 82° is the trigonometric ratio of an angle less than 45° because cos 82° = sin 8° and 8° < 45°.
So the answer is cos 82°.

Related problems in "Trigonometry"

We are asked to find the value of $P = \tan 43^{\circ} \tan 44^{\circ} \tan 45^{\circ} \tan 46^{\cir...

TrigonometryTangent FunctionAngle IdentitiesTrigonometric Simplification
2025/6/1

Solve the equation $\sin(x - \frac{\pi}{6}) = - \frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionSolving EquationsRadians
2025/5/29

Solve the trigonometric equation $\sin(x - \frac{\pi}{6}) = -\frac{\sqrt{2}}{2}$ for $x$.

Trigonometric EquationsSine FunctionAngles
2025/5/29

The problem asks to simplify the equation $y = \sin^2 x + \cos^2 x$.

Trigonometric IdentitiesSimplification
2025/5/29

The problem asks to evaluate the expression $A = \sin(\pi/4) - 2\cos(\pi - \pi/2)$.

TrigonometrySineCosineAngle CalculationExact Values
2025/5/29

The problem asks to simplify the trigonometric expression: $\frac{sin(\frac{\pi}{4}) - 2tan(\frac{\p...

Trigonometric FunctionsSimplificationTrigonometric Identities
2025/5/22

We need to evaluate the expression $\frac{\sin(\frac{2\pi}{3}) + \cos(\frac{\pi}{4})}{\sin(\frac{\pi...

TrigonometryTrigonometric FunctionsUnit CircleExpression Evaluation
2025/5/22

The problem asks to find which trigonometric ratio is equivalent to a trigonometric ratio of an angl...

TrigonometryTrigonometric IdentitiesAngle ConversionSineCosineTangent
2025/5/19

The problem asks to simplify the expression $\sin(2\alpha) \cdot \frac{\cot(\alpha)}{2}$.

TrigonometryTrigonometric IdentitiesDouble Angle FormulaCotangentSimplification
2025/5/13

The problem states that $5\cos{A} + 3 = 0$ and $180^\circ < A < 360^\circ$. We need to determine the...

TrigonometryTrigonometric IdentitiesUnit CircleQuadrant AnalysisSineCosineTangent
2025/5/12