問題は、導関数 $F'(x) = -2x + 3$ と条件 $F(-2) = -3$ を満たす関数 $F(x)$ を求めることです。

解析学積分導関数不定積分積分定数
2025/4/7

1. 問題の内容

問題は、導関数 F(x)=2x+3F'(x) = -2x + 3 と条件 F(2)=3F(-2) = -3 を満たす関数 F(x)F(x) を求めることです。

2. 解き方の手順

まず、F(x)F'(x) を積分して F(x)F(x) を求めます。
F(x)=F(x)dx=(2x+3)dxF(x) = \int F'(x) dx = \int (-2x + 3) dx
積分を実行すると、
F(x)=x2+3x+CF(x) = -x^2 + 3x + C
ここで、CC は積分定数です。次に、与えられた条件 F(2)=3F(-2) = -3 を用いて CC の値を決定します。
F(2)=(2)2+3(2)+C=46+C=10+CF(-2) = -(-2)^2 + 3(-2) + C = -4 - 6 + C = -10 + C
F(2)=3F(-2) = -3 であるから、
10+C=3-10 + C = -3
C=3+10=7C = -3 + 10 = 7
したがって、F(x)F(x) は次のようになります。
F(x)=x2+3x+7F(x) = -x^2 + 3x + 7

3. 最終的な答え

F(x)=x2+3x+7F(x) = -x^2 + 3x + 7

「解析学」の関連問題

与えられた関数を、指定された変数について微分する問題です。 (1) $E = -\frac{GMm}{r}$ を $r$ で微分 (2) $I = \frac{2R}{R+r}$ を $R$ で微分 ...

微分微分法商の微分公式
2025/7/29

問題4は、広義積分 $\int_1^\infty \frac{1}{x^\alpha} dx$ が収束するための $\alpha$ の条件を求める問題です。

広義積分積分収束発散極限
2025/7/29

2変数関数 $f(x, y) = (1 + 2x + 4y)^{-1/2}$ のマクローリン展開を3次の項まで求め、与えられた式 $f(x, y) = ア - x - イy + \frac{ウ}{エ}...

多変数関数マクローリン展開偏微分
2025/7/29

問題1は、次の不定積分を計算する問題です。 a) $\int \frac{x^3}{x^2 - 1} dx$ c) $\int \frac{x}{(x+1)(x-2)} dx$ 問題2は、次の不定積分...

不定積分部分分数分解三角関数
2025/7/29

関数 $f(x) = \frac{x}{(x+1)(2x+1)}$ について、以下の2つの問いに答えます。 (1) $f(x)$ を部分分数分解した後、$n$回導関数を求め、$x=0$を代入したときに...

関数部分分数分解導関数マクローリン展開級数
2025/7/29

関数 $f(x) = \frac{x}{(x+1)(2x+1)}$ に対して、その $n$ 回導関数 $f^{(n)}(x)$ を求め、$x=0$ を代入した $f^{(n)}(0)$ を求める問題で...

導関数部分分数分解微分
2025/7/29

次の極限を求めよ。 $$ \lim_{x \to 0} \frac{\sin^{-1}x - \sin^{-1}(\log(x+1))}{x - \log(x+1)} $$

極限ロピタルの定理逆三角関数微分
2025/7/29

$0 < x < 1$ のとき、次の不等式が成り立つことを、平均値の定理を用いて証明します。 $\frac{1}{\sqrt{1 - (\log(x+1))^2}} < \frac{\arcsin x...

平均値の定理不等式arcsin微分
2025/7/29

$\lim_{x \to +0} \log x^{2x}$ を計算します。

極限対数関数ロピタルの定理
2025/7/29

$\lim_{x \to 0} \frac{\tan^{-1} x}{x}$ の極限値を求める。

極限ロピタルの定理逆正接関数
2025/7/29