In Figure 6.35, we are given $m\angle BCD = 90^\circ$, $m\angle BAC = 49^\circ$, and $m\angle ADB = 61^\circ$. We need to find: a) $m\angle ACB$ b) $m\angle ABC$ c) $m\angle CAD$ d) $m\angle BEC$

GeometryAnglesTrianglesQuadrilateralsCircle TheoremsExterior Angles
2025/3/12

1. Problem Description

In Figure 6.35, we are given mBCD=90m\angle BCD = 90^\circ, mBAC=49m\angle BAC = 49^\circ, and mADB=61m\angle ADB = 61^\circ. We need to find:
a) mACBm\angle ACB
b) mABCm\angle ABC
c) mCADm\angle CAD
d) mBECm\angle BEC

2. Solution Steps

a) Finding mACBm\angle ACB:
Since ADB\angle ADB and ACB\angle ACB subtend the same arc ABAB, they are equal.
mACB=mADBm\angle ACB = m\angle ADB
mACB=61m\angle ACB = 61^\circ
b) Finding mABCm\angle ABC:
In ABC\triangle ABC, we know mBAC=49m\angle BAC = 49^\circ and mACB=61m\angle ACB = 61^\circ.
The sum of angles in a triangle is 180180^\circ.
mABC+mBAC+mACB=180m\angle ABC + m\angle BAC + m\angle ACB = 180^\circ
mABC+49+61=180m\angle ABC + 49^\circ + 61^\circ = 180^\circ
mABC+110=180m\angle ABC + 110^\circ = 180^\circ
mABC=180110m\angle ABC = 180^\circ - 110^\circ
mABC=70m\angle ABC = 70^\circ
c) Finding mCADm\angle CAD:
In quadrilateral ABCDABCD, we have mBCD=90m\angle BCD = 90^\circ, mABC=70m\angle ABC = 70^\circ, mADB=61m\angle ADB = 61^\circ. Since BAC=49\angle BAC=49, BAD=BAC+CAD=49+CAD\angle BAD = \angle BAC+\angle CAD = 49+\angle CAD.
The sum of the angles in a quadrilateral is 360360^\circ.
mABC+mBCD+mCDA+mDAB=360m\angle ABC + m\angle BCD + m\angle CDA + m\angle DAB = 360^\circ
70+90+61+mCAD+49=36070^\circ + 90^\circ + 61^\circ + m\angle CAD + 49^\circ = 360^\circ
270+mCAD=36010=260270^\circ + m\angle CAD=360^\circ-10^\circ = 260^\circ
70+90+61+mBAD=36070^\circ + 90^\circ + 61^\circ + m\angle BAD=360^\circ
221+mBAD=360221^\circ + m\angle BAD=360^\circ
mBAD=360221m\angle BAD = 360^\circ -221^\circ
mBAD=139m\angle BAD = 139^\circ
mCAD=mBADmBACm\angle CAD=m\angle BAD -m\angle BAC
mCAD=13949=90m\angle CAD = 139^\circ - 49^\circ = 90^\circ.
Since BCD=90\angle BCD=90^\circ, BDBD is a diameter. Therefore, BAD=90\angle BAD=90^\circ
In ABD\triangle ABD, mABD=180mBADmADB=1809061=29m\angle ABD=180^\circ - m\angle BAD -m\angle ADB = 180^\circ - 90^\circ -61^\circ=29^\circ
Also mBDA=61m\angle BDA = 61^\circ, since arc BA has a degree measure of 2×61=1222\times61^\circ = 122^\circ, the central angle made by AB has degree measure 122122^\circ, so since the circle has degree measure 360360, arc BAD has degree measure 360122=238360-122=238^\circ. This makes BCD=1/2×238=119\angle BCD=1/2\times238 =119^\circ, contradiction to having BCD=90\angle BCD=90^\circ
CAD=BADBAC\angle CAD = \angle BAD - \angle BAC. BAD=BAC+CAD\angle BAD=\angle BAC+\angle CAD, so BAD=90\angle BAD = 90. So mCAD=9049=41m\angle CAD = 90^\circ - 49^\circ=41^\circ
d) Finding mBECm\angle BEC:
mBECm\angle BEC is an exterior angle of ABE\triangle ABE.
mBEC=mEAB+mEBAm\angle BEC = m\angle EAB + m\angle EBA
mBEC=mCAB+mCBAm\angle BEC = m\angle CAB + m\angle CBA
mBEC=49+70m\angle BEC = 49^\circ + 70^\circ
mBEC=119m\angle BEC = 119^\circ

3. Final Answer

a) mACB=61m\angle ACB = 61^\circ
b) mABC=70m\angle ABC = 70^\circ
c) mCAD=41m\angle CAD = 41^\circ
d) mBEC=119m\angle BEC = 119^\circ

Related problems in "Geometry"

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3

In the given diagram, we are given that $∠PMQ = 34°$ and $∠NQM = 28°$. We need to find the measure o...

AnglesCirclesCyclic QuadrilateralsTriangles
2025/6/3

We need to sketch the graph of $f(x, y)$ for the following functions: 7. $f(x, y) = 6$ 8. $f(x, y) =...

3D GeometrySurfacesPlanesCylindersParaboloidsEllipsoidsHemispheres
2025/6/3

The problem provides the measures of the six interior angles of a hexagon in terms of $x$. The task ...

PolygonHexagonInterior AnglesAngle SumAlgebra
2025/6/3