Given a triangle with side $a = 7.82$ cm, side $b = 14.35$ cm, and angle $B = 115^\circ 20'$, find angle $A$. The given solution starts by converting $115^\circ 20'$ to $117^\circ$, which is incorrect. We should be using $B = 115 + \frac{20}{60} = 115 + \frac{1}{3} = 115.333\ldots$ degrees. The law of sines is being used, which is $\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}$

GeometryLaw of SinesTrianglesTrigonometryAngle Calculation
2025/3/12

1. Problem Description

Given a triangle with side a=7.82a = 7.82 cm, side b=14.35b = 14.35 cm, and angle B=11520B = 115^\circ 20', find angle AA. The given solution starts by converting 11520115^\circ 20' to 117117^\circ, which is incorrect. We should be using B=115+2060=115+13=115.333B = 115 + \frac{20}{60} = 115 + \frac{1}{3} = 115.333\ldots degrees. The law of sines is being used, which is
asinA=bsinB=csinC\frac{a}{\sin A} = \frac{b}{\sin B} = \frac{c}{\sin C}

2. Solution Steps

First, we convert 2020' to degrees:
20=2060=130.33320' = \frac{20}{60}^\circ = \frac{1}{3}^\circ \approx 0.333^\circ
So, B=11520=115.333B = 115^\circ 20' = 115.333^\circ
Using the Law of Sines:
asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}
7.82sinA=14.35sin115.333\frac{7.82}{\sin A} = \frac{14.35}{\sin 115.333^\circ}
sinA=7.82sin115.33314.35\sin A = \frac{7.82 \sin 115.333^\circ}{14.35}
sinA=7.82×0.90414.357.06914.350.4926\sin A = \frac{7.82 \times 0.904}{14.35} \approx \frac{7.069}{14.35} \approx 0.4926
A=arcsin(0.4926)29.51A = \arcsin(0.4926) \approx 29.51^\circ
The provided solution uses 117117^\circ for BB, and also incorrectly calculates sinA\sin A.
The work shown calculates 7.82sin117sin14.35\frac{7.82\sin 117}{sin 14.35}, but this is not angle AA, it is the side cc divided by sinCsin C.
Using the given values,
sinA=7.82sin(117)14.35=7.82(0.891)14.356.96714.350.4855\sin A = \frac{7.82 \sin(117^\circ)}{14.35} = \frac{7.82(0.891)}{14.35} \approx \frac{6.967}{14.35} \approx 0.4855
A=arcsin(0.4855)29.05A = \arcsin(0.4855) \approx 29.05^\circ

3. Final Answer

The value for AA is approximately 29.5129.51^\circ, or 29.0529.05^\circ if we use 117117^\circ for BB. The value given, 7.246, is not angle A. It appears to be the result of a calculation relating to the side c.
The calculation shown on the image gives A=arcsin(7.82sin(117)14.35)=arcsin(0.4855)29.05A=arcsin(\frac{7.82 sin(117^\circ)}{14.35})=arcsin(0.4855) \approx 29.05^\circ

Related problems in "Geometry"

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3