Given a triangle with side $a = 7.82$ cm, side $b = 14.35$ cm, and angle $B = 115^\circ + 120''$. We want to find the angle $A$ in degrees. Note that 1 degree = 60 minutes and 1 minute = 60 seconds, so $120'' = 2'$. Therefore, $B = 115^\circ 2'$ which is approximately $117^\circ$.

GeometryTriangleLaw of SinesTrigonometryAngle Calculation
2025/3/12

1. Problem Description

Given a triangle with side a=7.82a = 7.82 cm, side b=14.35b = 14.35 cm, and angle B=115+120B = 115^\circ + 120''. We want to find the angle AA in degrees. Note that 1 degree = 60 minutes and 1 minute = 60 seconds, so 120=2120'' = 2'. Therefore, B=1152B = 115^\circ 2' which is approximately 117117^\circ.

2. Solution Steps

First, convert the angle BB from degrees and minutes to degrees.
Since 1=(160)1' = (\frac{1}{60})^\circ, we have 2=(260)=(130)0.03332' = (\frac{2}{60})^\circ = (\frac{1}{30})^\circ \approx 0.0333^\circ
Thus, B=115+(260)=115.0333B = 115^\circ + (\frac{2}{60})^\circ = 115.0333^\circ
We use the law of sines to find angle AA:
asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}
sinA=asinBb\sin A = \frac{a \sin B}{b}
sinA=7.82sin(115.0333)14.35\sin A = \frac{7.82 \sin(115.0333^\circ)}{14.35}
A=arcsin(7.82sin(115.0333)14.35)A = \arcsin\left(\frac{7.82 \sin(115.0333^\circ)}{14.35}\right)
Now, we calculate the value of AA.
sin(115.0333)0.9062\sin(115.0333^\circ) \approx 0.9062
sinA=7.82×0.906214.357.086514.350.4938\sin A = \frac{7.82 \times 0.9062}{14.35} \approx \frac{7.0865}{14.35} \approx 0.4938
A=arcsin(0.4938)29.58A = \arcsin(0.4938) \approx 29.58^\circ
The solution in the image calculates:
asinA=bsinB\frac{a}{\sin A} = \frac{b}{\sin B}
7.82sinA=14.35sin117\frac{7.82}{\sin A} = \frac{14.35}{\sin 117^\circ}
sinA=7.82sin11714.35\sin A = \frac{7.82 \sin 117^\circ}{14.35}
A=arcsin(7.82sin11714.35)A = \arcsin (\frac{7.82 \sin 117^\circ}{14.35})
sin1170.8910\sin 117^\circ \approx 0.8910
sinA=7.82×0.891014.35=6.967614.350.4856\sin A = \frac{7.82 \times 0.8910}{14.35} = \frac{6.9676}{14.35} \approx 0.4856
A=arcsin(0.4856)=29.05A = \arcsin(0.4856) = 29.05^\circ
In the image, the value of 7.82sin117sin14.35\frac{7.82 \sin 117^\circ}{\sin 14.35} is calculated as 7.
2
4

6. $\sin 14.35$ is not being used correctly here.

A=arcsin(7.82sin(117)14.35)arcsin(7.820.891014.35)=arcsin(0.4856)29.05A = \arcsin\left(\frac{7.82\sin(117^\circ)}{14.35}\right) \approx \arcsin\left(\frac{7.82 \cdot 0.8910}{14.35}\right) = \arcsin(0.4856) \approx 29.05^\circ

3. Final Answer

The angle A is approximately 29.0529.05^\circ.

Related problems in "Geometry"

We are asked to calculate the volume of a cylinder. The diameter of the circular base is $8$ cm, and...

VolumeCylinderRadiusDiameterPiUnits of Measurement
2025/6/5

The problem asks us to construct an equilateral triangle with a side length of 7 cm using a compass ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to construct an equilateral triangle using a pair of compass and a pencil, given a ...

Geometric ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

The problem asks to find the value of $p$ in a triangle with angles $4p$, $6p$, and $2p$.

TriangleAnglesAngle Sum PropertyLinear Equations
2025/6/4

The angles of a triangle are given as $2p$, $4p$, and $6p$ (in degrees). We need to find the value o...

TrianglesAngle Sum PropertyLinear Equations
2025/6/4

The problem asks to construct an equilateral triangle with sides of length 7 cm using a compass and ...

ConstructionEquilateral TriangleCompass and Straightedge
2025/6/4

We are given two polygons, $P$ and $Q$, on a triangular grid. We need to find all sequences of trans...

TransformationsRotationsReflectionsTranslationsGeometric TransformationsPolygons
2025/6/4

We need to describe the domain of the following two functions geometrically: 27. $f(x, y, z) = \sqrt...

3D GeometryDomainSphereHyperboloidMultivariable Calculus
2025/6/3

We need to find the gradient of the line passing through the points $P(2, -3)$ and $Q(5, 3)$.

Coordinate GeometryGradientSlope of a Line
2025/6/3

The problem presents a diagram with a circle and some angles. Given that $\angle PMQ = 34^\circ$ and...

Circle GeometryAnglesCyclic QuadrilateralsInscribed Angles
2025/6/3