The problem asks us to simplify several expressions involving complex numbers. The operations include multiplication, addition, subtraction, and squaring.

AlgebraComplex NumbersArithmetic OperationsComplex Number MultiplicationComplex Number AdditionComplex Number SubtractionComplex Number Squaring
2025/4/9

1. Problem Description

The problem asks us to simplify several expressions involving complex numbers. The operations include multiplication, addition, subtraction, and squaring.

2. Solution Steps

a. (5+2i)(8+6i)=5(8)+5(6i)+2i(8)+2i(6i)=40+30i+16i+12i2=40+46i+12(1)=40+46i12=28+46i(5+2i)(8+6i) = 5(8) + 5(6i) + 2i(8) + 2i(6i) = 40 + 30i + 16i + 12i^2 = 40 + 46i + 12(-1) = 40 + 46i - 12 = 28 + 46i
b. (13+25i)+(12+14i)=(13+12)+(25+14)i=(26+36)+(820+520)i=56+1320i(\frac{1}{3} + \frac{2}{5}i) + (\frac{1}{2} + \frac{1}{4}i) = (\frac{1}{3} + \frac{1}{2}) + (\frac{2}{5} + \frac{1}{4})i = (\frac{2}{6} + \frac{3}{6}) + (\frac{8}{20} + \frac{5}{20})i = \frac{5}{6} + \frac{13}{20}i
c. (73i)+(4+4i)=(74)+(3+4)i=11+i(-7-3i) + (-4+4i) = (-7-4) + (-3+4)i = -11 + i
d. (4+i3)+(62i3)=(46)+(323)i=2i3(4+i\sqrt{3}) + (-6-2i\sqrt{3}) = (4-6) + (\sqrt{3} - 2\sqrt{3})i = -2 - i\sqrt{3}
e. (67i)(76i)=(67)+(7(6))i=1+(7+6)i=1i(6-7i) - (7-6i) = (6-7) + (-7-(-6))i = -1 + (-7+6)i = -1 -i
f. (12i)2=(12i)(12i)=(1)(1)+(1)(2i)+(2i)(1)+(2i)(2i)=1+2i+2i+4i2=1+4i+4(1)=1+4i4=3+4i(-1-2i)^2 = (-1-2i)(-1-2i) = (-1)(-1) + (-1)(-2i) + (-2i)(-1) + (-2i)(-2i) = 1 + 2i + 2i + 4i^2 = 1 + 4i + 4(-1) = 1 + 4i - 4 = -3 + 4i
g. (5i)(8i)=40i2=40(1)=40(-5i)(8i) = -40i^2 = -40(-1) = 40

3. Final Answer

a. 28+46i28 + 46i
b. 56+1320i\frac{5}{6} + \frac{13}{20}i
c. 11+i-11 + i
d. 2i3-2 - i\sqrt{3}
e. 1i-1 - i
f. 3+4i-3 + 4i
g. 4040

Related problems in "Algebra"

The problem gives an equation $z = \sqrt{16 - x^2 - y^2}$. We are asked to solve the problem. The ...

FunctionsDomainRangeInequalitiesSquare Roots
2025/4/14

The problem has two parts: (a) involves linear transformations and matrices, and (b) involves polyno...

Linear TransformationsMatricesMatrix MultiplicationMatrix InversePolynomialsRemainder TheoremQuadratic Equations
2025/4/13

We are given a set of multiple-choice questions involving calculus concepts, likely for a calculus e...

ExponentsLogarithmsEquations
2025/4/13

Given that $(x+2)$ and $(2x+3)$ are factors of $f(x) = 6x^3 + px^2 + 4x - q$, we need to find the va...

PolynomialsFactor TheoremPolynomial DivisionRoots of PolynomialsCubic EquationsSystems of Equations
2025/4/13

The problem describes an arithmetic progression (AP) of houses built each year starting from 2001. W...

Arithmetic ProgressionSequences and SeriesWord Problems
2025/4/13

The problem consists of three questions: 1. (a) Calculate the amount Mr. Solo paid for a home theatr...

PercentageBase ConversionFormula ManipulationSquare RootsSignificant Figures
2025/4/13

(a) Find the coefficient of $x^4y^2$ in the binomial expansion of $(2x+y)^6$. (b) Find the fifth ter...

Binomial TheoremPolynomial ExpansionCombinationsCoefficients
2025/4/13

The problem defines a sequence $(U_n)_{n \in \mathbb{N}}$ by $U_0 = 1$ and $U_{n+1} = \frac{2U_n}{U_...

SequencesSeriesArithmetic SequenceRecurrence RelationSummation
2025/4/13

The problem requires us to find the first four terms of the binomial expansion of $\sqrt[3]{1+x}$ an...

Binomial TheoremSeries ExpansionApproximationCube Roots
2025/4/13

We need to solve the equation $40 - x + x + 312 - x = 400$ for $x$.

Linear EquationsSolving EquationsSimplification
2025/4/12