The problem has two parts: (a) involves linear transformations and matrices, and (b) involves polynomials and remainders. (a) (i) We are given two linear transformations $P$ and $Q$ and asked to write down the matrices $P$ and $Q$ which represent these transformations. The transformations are: $P(x, y) = (5x + 3y, 6x + 4y)$ $Q(x, y) = (4x - 3y, -6x + 5y)$ (ii) Find the matrix $QP$. (iii) Find the inverse of matrix $Q$, $Q^{-1}$. (b) Two polynomials are given: $x^3 + 4x^2 - 19x - 6$ and $x^3 - 3x^2 + 5x - 15$. When these polynomials are divided by $(x + m)$, they have the same remainder. Find the value(s) of $m$.

AlgebraLinear TransformationsMatricesMatrix MultiplicationMatrix InversePolynomialsRemainder TheoremQuadratic Equations
2025/4/13

1. Problem Description

The problem has two parts: (a) involves linear transformations and matrices, and (b) involves polynomials and remainders.
(a)
(i) We are given two linear transformations PP and QQ and asked to write down the matrices PP and QQ which represent these transformations. The transformations are:
P(x,y)=(5x+3y,6x+4y)P(x, y) = (5x + 3y, 6x + 4y)
Q(x,y)=(4x3y,6x+5y)Q(x, y) = (4x - 3y, -6x + 5y)
(ii) Find the matrix QPQP.
(iii) Find the inverse of matrix QQ, Q1Q^{-1}.
(b)
Two polynomials are given: x3+4x219x6x^3 + 4x^2 - 19x - 6 and x33x2+5x15x^3 - 3x^2 + 5x - 15. When these polynomials are divided by (x+m)(x + m), they have the same remainder. Find the value(s) of mm.

2. Solution Steps

(a)
(i)
The matrix for transformation PP can be directly written from the coefficients of xx and yy in the transformation P(x,y)=(5x+3y,6x+4y)P(x, y) = (5x + 3y, 6x + 4y). Thus, the matrix PP is:
P=[5364]P = \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix}
Similarly, the matrix for transformation QQ can be written from the coefficients of xx and yy in the transformation Q(x,y)=(4x3y,6x+5y)Q(x, y) = (4x - 3y, -6x + 5y). Thus, the matrix QQ is:
Q=[4365]Q = \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix}
(ii)
To find the matrix QPQP, we need to multiply matrix QQ by matrix PP.
QP=[4365][5364]=[(45+(3)6)(43+(3)4)(65+56)(63+54)]=[(2018)(1212)(30+30)(18+20)]=[2002]QP = \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix} \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix} = \begin{bmatrix} (4*5 + (-3)*6) & (4*3 + (-3)*4) \\ (-6*5 + 5*6) & (-6*3 + 5*4) \end{bmatrix} = \begin{bmatrix} (20 - 18) & (12 - 12) \\ (-30 + 30) & (-18 + 20) \end{bmatrix} = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
(iii)
To find the inverse of matrix QQ, Q1Q^{-1}, we use the formula for the inverse of a 2×22 \times 2 matrix. If Q=[abcd]Q = \begin{bmatrix} a & b \\ c & d \end{bmatrix}, then Q1=1adbc[dbca]Q^{-1} = \frac{1}{ad - bc} \begin{bmatrix} d & -b \\ -c & a \end{bmatrix}.
For Q=[4365]Q = \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix}, we have a=4a = 4, b=3b = -3, c=6c = -6, and d=5d = 5.
The determinant of QQ is adbc=(4)(5)(3)(6)=2018=2ad - bc = (4)(5) - (-3)(-6) = 20 - 18 = 2.
Therefore, Q1=12[5364]=[5/23/232]Q^{-1} = \frac{1}{2} \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix} = \begin{bmatrix} 5/2 & 3/2 \\ 3 & 2 \end{bmatrix}
(b)
According to the Remainder Theorem, the remainder when a polynomial f(x)f(x) is divided by (xc)(x - c) is f(c)f(c).
Let f(x)=x3+4x219x6f(x) = x^3 + 4x^2 - 19x - 6 and g(x)=x33x2+5x15g(x) = x^3 - 3x^2 + 5x - 15. We are given that when f(x)f(x) and g(x)g(x) are divided by (x+m)(x + m), they have the same remainder. Thus, f(m)=g(m)f(-m) = g(-m).
f(m)=(m)3+4(m)219(m)6=m3+4m2+19m6f(-m) = (-m)^3 + 4(-m)^2 - 19(-m) - 6 = -m^3 + 4m^2 + 19m - 6
g(m)=(m)33(m)2+5(m)15=m33m25m15g(-m) = (-m)^3 - 3(-m)^2 + 5(-m) - 15 = -m^3 - 3m^2 - 5m - 15
Setting these equal:
m3+4m2+19m6=m33m25m15-m^3 + 4m^2 + 19m - 6 = -m^3 - 3m^2 - 5m - 15
7m2+24m+9=07m^2 + 24m + 9 = 0
We can solve this quadratic equation for mm using the quadratic formula or by factoring. Let's try factoring:
(7m+3)(m+3)=0(7m + 3)(m + 3) = 0
So, 7m+3=07m + 3 = 0 or m+3=0m + 3 = 0.
If 7m+3=07m + 3 = 0, then m=37m = -\frac{3}{7}.
If m+3=0m + 3 = 0, then m=3m = -3.

3. Final Answer

(a)
(i) P=[5364]P = \begin{bmatrix} 5 & 3 \\ 6 & 4 \end{bmatrix}, Q=[4365]Q = \begin{bmatrix} 4 & -3 \\ -6 & 5 \end{bmatrix}
(ii) QP=[2002]QP = \begin{bmatrix} 2 & 0 \\ 0 & 2 \end{bmatrix}
(iii) Q1=[5/23/232]Q^{-1} = \begin{bmatrix} 5/2 & 3/2 \\ 3 & 2 \end{bmatrix}
(b) m=3m = -3 or m=37m = -\frac{3}{7}

Related problems in "Algebra"

The problem asks to simplify the given expressions and write them in positive index form. This means...

ExponentsSimplificationNegative ExponentsAlgebraic Expressions
2025/4/17

The problem asks to evaluate the following expressions: (a) $a^0 \times b^0$ (b) $x^0 + 2p^0 - a^0$ ...

ExponentsOrder of OperationsSimplification
2025/4/17

We are given that $x - \frac{1}{x} = m$. a) We need to find the value of $x^2 + \frac{1}{x^2}$. b) W...

Algebraic ManipulationEquationsExponentsVariables
2025/4/17

The problem requires us to simplify four algebraic expressions. (a) $\frac{a^4 \times a^3}{a^2}$ (b)...

ExponentsSimplificationAlgebraic Expressions
2025/4/17

The problem requires us to graph the exponential function $f(x) = 4 \cdot 2^x$.

Exponential FunctionsGraphingFunction EvaluationExponents
2025/4/17

Simplify the expression $(y^{\frac{3}{4}})^{\frac{1}{2}}$.

ExponentsSimplificationPower of a Power Rule
2025/4/17

The problem asks us to simplify the following expressions: (b) $(x^5)^3$ (c) $(a^2b^3)^4$ (d) $a^2(a...

ExponentsSimplificationPolynomialsDistributive PropertyPower of a PowerProduct of Powers
2025/4/17

The problem asks to simplify the given expression: $(\frac{2r^{-3}t^6}{5u^9})^4$

ExponentsSimplificationAlgebraic Expressions
2025/4/17

The problem asks us to determine if the two given expressions, $(5p^3q)(4p^5q^9)$ and $20p^8q^{10}$,...

PolynomialsExponentsSimplificationEquivalence
2025/4/17

The problem is to simplify the expression $(p^5r^2)^4(-7p^3r)(6pr^3)$.

ExponentsSimplificationPolynomials
2025/4/17