(a) a2a4×a3 We use the rule am×an=am+n. Thus, a4×a3=a4+3=a7. Then the expression becomes a2a7. We use the rule anam=am−n. Thus, a2a7=a7−2=a5. (b) 2x4(3x)3×(4x2)2 We use the rule (ab)n=anbn. (3x)3=33x3=27x3. (4x2)2=42(x2)2=16x4. Thus, the expression becomes 2x427x3×16x4. 27×16=432, so we have 2x4432x3×x4. Using the rule am×an=am+n, we get 2x4432x7. Then 2432=216, and using the rule anam=am−n, we get x4x7=x7−4=x3. Therefore, the expression simplifies to 216x3. (c) epen×em We use the rule am×an=am+n. Thus, en×em=en+m. The expression becomes epen+m. We use the rule anam=am−n. Thus, epen+m=en+m−p. (d) t(2k)26b(a2b)2÷(2kt2)33(ab)2 We can rewrite the division as multiplication by the reciprocal:
t(2k)26b(a2b)2×3(ab)2(2kt2)3 Simplify each term:
(a2b)2=(a2)2b2=a4b2 (2k)2=4k2 (2kt2)3=23k3(t2)3=8k3t6 (ab)2=a2b2 Substitute these back into the expression:
t(4k2)6b(a4b2)×3(a2b2)8k3t6=4tk26ba4b2×3a2b28k3t6=4tk26a4b3×3a2b28k3t6 Multiply the fractions:
4×3×t×k2×a2×b26×8×a4×b3×k3×t6=12a2b2k2t48a4b3k3t6 Simplify the expression:
1248=4 a2a4=a2 b2b3=b k2k3=k tt6=t5 Thus, the expression simplifies to 4a2bkt5.