The problem requires us to simplify four algebraic expressions. (a) $\frac{a^4 \times a^3}{a^2}$ (b) $\frac{(3x)^3 \times (4x^2)^2}{2x^4}$ (c) $\frac{e^n \times e^m}{e^p}$ (d) $\frac{6b(a^2b)^2}{t(2k)^2} \div \frac{3(ab)^2}{(2kt^2)^3}$

AlgebraExponentsSimplificationAlgebraic Expressions
2025/4/17

1. Problem Description

The problem requires us to simplify four algebraic expressions.
(a) a4×a3a2\frac{a^4 \times a^3}{a^2}
(b) (3x)3×(4x2)22x4\frac{(3x)^3 \times (4x^2)^2}{2x^4}
(c) en×emep\frac{e^n \times e^m}{e^p}
(d) 6b(a2b)2t(2k)2÷3(ab)2(2kt2)3\frac{6b(a^2b)^2}{t(2k)^2} \div \frac{3(ab)^2}{(2kt^2)^3}

2. Solution Steps

(a) a4×a3a2\frac{a^4 \times a^3}{a^2}
We use the rule am×an=am+na^m \times a^n = a^{m+n}. Thus, a4×a3=a4+3=a7a^4 \times a^3 = a^{4+3} = a^7.
Then the expression becomes a7a2\frac{a^7}{a^2}.
We use the rule aman=amn\frac{a^m}{a^n} = a^{m-n}. Thus, a7a2=a72=a5\frac{a^7}{a^2} = a^{7-2} = a^5.
(b) (3x)3×(4x2)22x4\frac{(3x)^3 \times (4x^2)^2}{2x^4}
We use the rule (ab)n=anbn(ab)^n = a^n b^n.
(3x)3=33x3=27x3(3x)^3 = 3^3 x^3 = 27x^3.
(4x2)2=42(x2)2=16x4(4x^2)^2 = 4^2 (x^2)^2 = 16x^4.
Thus, the expression becomes 27x3×16x42x4\frac{27x^3 \times 16x^4}{2x^4}.
27×16=43227 \times 16 = 432, so we have 432x3×x42x4\frac{432x^3 \times x^4}{2x^4}.
Using the rule am×an=am+na^m \times a^n = a^{m+n}, we get 432x72x4\frac{432x^7}{2x^4}.
Then 4322=216\frac{432}{2} = 216, and using the rule aman=amn\frac{a^m}{a^n} = a^{m-n}, we get x7x4=x74=x3\frac{x^7}{x^4} = x^{7-4} = x^3.
Therefore, the expression simplifies to 216x3216x^3.
(c) en×emep\frac{e^n \times e^m}{e^p}
We use the rule am×an=am+na^m \times a^n = a^{m+n}. Thus, en×em=en+me^n \times e^m = e^{n+m}.
The expression becomes en+mep\frac{e^{n+m}}{e^p}.
We use the rule aman=amn\frac{a^m}{a^n} = a^{m-n}. Thus, en+mep=en+mp\frac{e^{n+m}}{e^p} = e^{n+m-p}.
(d) 6b(a2b)2t(2k)2÷3(ab)2(2kt2)3\frac{6b(a^2b)^2}{t(2k)^2} \div \frac{3(ab)^2}{(2kt^2)^3}
We can rewrite the division as multiplication by the reciprocal:
6b(a2b)2t(2k)2×(2kt2)33(ab)2\frac{6b(a^2b)^2}{t(2k)^2} \times \frac{(2kt^2)^3}{3(ab)^2}
Simplify each term:
(a2b)2=(a2)2b2=a4b2(a^2b)^2 = (a^2)^2 b^2 = a^4 b^2
(2k)2=4k2(2k)^2 = 4k^2
(2kt2)3=23k3(t2)3=8k3t6(2kt^2)^3 = 2^3 k^3 (t^2)^3 = 8k^3 t^6
(ab)2=a2b2(ab)^2 = a^2b^2
Substitute these back into the expression:
6b(a4b2)t(4k2)×8k3t63(a2b2)=6ba4b24tk2×8k3t63a2b2=6a4b34tk2×8k3t63a2b2\frac{6b(a^4b^2)}{t(4k^2)} \times \frac{8k^3 t^6}{3(a^2b^2)} = \frac{6ba^4b^2}{4tk^2} \times \frac{8k^3 t^6}{3a^2b^2} = \frac{6a^4b^3}{4tk^2} \times \frac{8k^3 t^6}{3a^2b^2}
Multiply the fractions:
6×8×a4×b3×k3×t64×3×t×k2×a2×b2=48a4b3k3t612a2b2k2t\frac{6 \times 8 \times a^4 \times b^3 \times k^3 \times t^6}{4 \times 3 \times t \times k^2 \times a^2 \times b^2} = \frac{48a^4b^3k^3t^6}{12a^2b^2k^2t}
Simplify the expression:
4812=4\frac{48}{12} = 4
a4a2=a2\frac{a^4}{a^2} = a^2
b3b2=b\frac{b^3}{b^2} = b
k3k2=k\frac{k^3}{k^2} = k
t6t=t5\frac{t^6}{t} = t^5
Thus, the expression simplifies to 4a2bkt54a^2bkt^5.

3. Final Answer

(a) a5a^5
(b) 216x3216x^3
(c) en+mpe^{n+m-p}
(d) 4a2bkt54a^2bkt^5

Related problems in "Algebra"

We are given a piecewise function: $f(x) = \begin{cases} x-1, & x < n \\ -x+4, & x \ge n \end{cases}...

Piecewise FunctionsRangeFunctionsInequalitiesFunction Analysis
2025/4/18

The problem asks us to find the x-intercept(s) and y-intercept(s) of the piecewise-defined function ...

FunctionsPiecewise FunctionsInterceptsGraphing
2025/4/18

We are given a piecewise-defined function in a graph. We need to express the function in function no...

Piecewise FunctionsLinear EquationsInterceptsFunction Notation
2025/4/18

The problem asks to describe the domain and range of the function represented by the given graph. Th...

FunctionsDomainRangeDiscrete FunctionsCoordinate Geometry
2025/4/18

The problem asks us to determine if the given function, represented by discrete points on a graph, i...

Linear FunctionsDomain and RangeDiscrete MathematicsFunctions
2025/4/18

The problem involves a polynomial $F(x, y, z) = x^3 + y^3 + z^3 - 3xyz$. (a) We need to show that $F...

PolynomialsFactorizationCyclic ExpressionsAlgebraic Manipulation
2025/4/18

We are given an arithmetic sequence $\{a_n\}$ with the sum of the first $n$ terms denoted by $S_n$. ...

Arithmetic SequencesSeriesSummationLinear Equations
2025/4/18

The problem is to find the first term $a_1$ and the common difference $d$ of an arithmetic sequence ...

Arithmetic SequencesSeriesLinear Equations
2025/4/18

Given an arithmetic sequence $\{a_n\}$, we know that $a_2 + a_8 = 1$. The sum of the first 3 terms i...

Arithmetic SequenceSeriesSummation
2025/4/18

The problem states that ${a_n}$ is an arithmetic sequence. We are given that $a_1 = \frac{1}{2}$ and...

Arithmetic SequencesSeriesCommon DifferenceSummation
2025/4/18