The problem asks us to find the quotient of the given complex numbers and express the answer in the standard form $a + bi$, where $a$ and $b$ are real numbers. We have six parts: a. $\frac{4i}{3-2i}$ b. $\frac{2+5i}{3+7i}$ c. $\frac{4-10i}{-3+7i}$ d. $\frac{-1-i}{-2-3i}$ e. $\frac{3+9i}{4-i}$ f. $\frac{-4+9i}{-3-6i}$

AlgebraComplex NumbersComplex Number DivisionComplex Conjugate
2025/4/9

1. Problem Description

The problem asks us to find the quotient of the given complex numbers and express the answer in the standard form a+bia + bi, where aa and bb are real numbers. We have six parts:
a. 4i32i\frac{4i}{3-2i}
b. 2+5i3+7i\frac{2+5i}{3+7i}
c. 410i3+7i\frac{4-10i}{-3+7i}
d. 1i23i\frac{-1-i}{-2-3i}
e. 3+9i4i\frac{3+9i}{4-i}
f. 4+9i36i\frac{-4+9i}{-3-6i}

2. Solution Steps

To divide complex numbers, we multiply the numerator and denominator by the conjugate of the denominator.
a. 4i32i=4i(3+2i)(32i)(3+2i)=12i+8i29(4i2)=12i89+4=8+12i13=813+1213i\frac{4i}{3-2i} = \frac{4i(3+2i)}{(3-2i)(3+2i)} = \frac{12i+8i^2}{9 - (4i^2)} = \frac{12i - 8}{9+4} = \frac{-8+12i}{13} = -\frac{8}{13} + \frac{12}{13}i
b. 2+5i3+7i=(2+5i)(37i)(3+7i)(37i)=614i+15i35i2949i2=6+i+359+49=41+i58=4158+158i\frac{2+5i}{3+7i} = \frac{(2+5i)(3-7i)}{(3+7i)(3-7i)} = \frac{6-14i+15i-35i^2}{9 - 49i^2} = \frac{6+i+35}{9+49} = \frac{41+i}{58} = \frac{41}{58} + \frac{1}{58}i
c. 410i3+7i=(410i)(37i)(3+7i)(37i)=1228i+30i+70i2949i2=12+2i709+49=82+2i58=41+i29=4129+129i\frac{4-10i}{-3+7i} = \frac{(4-10i)(-3-7i)}{(-3+7i)(-3-7i)} = \frac{-12-28i+30i+70i^2}{9 - 49i^2} = \frac{-12+2i-70}{9+49} = \frac{-82+2i}{58} = \frac{-41+i}{29} = -\frac{41}{29} + \frac{1}{29}i
d. 1i23i=(1i)(2+3i)(23i)(2+3i)=23i+2i3i249i2=2i+34+9=5i13=513113i\frac{-1-i}{-2-3i} = \frac{(-1-i)(-2+3i)}{(-2-3i)(-2+3i)} = \frac{2-3i+2i-3i^2}{4-9i^2} = \frac{2-i+3}{4+9} = \frac{5-i}{13} = \frac{5}{13} - \frac{1}{13}i
e. 3+9i4i=(3+9i)(4+i)(4i)(4+i)=12+3i+36i+9i216i2=12+39i916+1=3+39i17=317+3917i\frac{3+9i}{4-i} = \frac{(3+9i)(4+i)}{(4-i)(4+i)} = \frac{12+3i+36i+9i^2}{16 - i^2} = \frac{12+39i-9}{16+1} = \frac{3+39i}{17} = \frac{3}{17} + \frac{39}{17}i
f. 4+9i36i=(4+9i)(3+6i)(36i)(3+6i)=1224i27i+54i2936i2=1251i549+36=4251i45=1417i15=14151715i\frac{-4+9i}{-3-6i} = \frac{(-4+9i)(-3+6i)}{(-3-6i)(-3+6i)} = \frac{12-24i-27i+54i^2}{9 - 36i^2} = \frac{12-51i-54}{9+36} = \frac{-42-51i}{45} = \frac{-14-17i}{15} = -\frac{14}{15} - \frac{17}{15}i

3. Final Answer

a. 813+1213i-\frac{8}{13} + \frac{12}{13}i
b. 4158+158i\frac{41}{58} + \frac{1}{58}i
c. 4129+129i-\frac{41}{29} + \frac{1}{29}i
d. 513113i\frac{5}{13} - \frac{1}{13}i
e. 317+3917i\frac{3}{17} + \frac{39}{17}i
f. 14151715i-\frac{14}{15} - \frac{17}{15}i

Related problems in "Algebra"

The problem gives an equation $z = \sqrt{16 - x^2 - y^2}$. We are asked to solve the problem. The ...

FunctionsDomainRangeInequalitiesSquare Roots
2025/4/14

The problem has two parts: (a) involves linear transformations and matrices, and (b) involves polyno...

Linear TransformationsMatricesMatrix MultiplicationMatrix InversePolynomialsRemainder TheoremQuadratic Equations
2025/4/13

We are given a set of multiple-choice questions involving calculus concepts, likely for a calculus e...

ExponentsLogarithmsEquations
2025/4/13

Given that $(x+2)$ and $(2x+3)$ are factors of $f(x) = 6x^3 + px^2 + 4x - q$, we need to find the va...

PolynomialsFactor TheoremPolynomial DivisionRoots of PolynomialsCubic EquationsSystems of Equations
2025/4/13

The problem describes an arithmetic progression (AP) of houses built each year starting from 2001. W...

Arithmetic ProgressionSequences and SeriesWord Problems
2025/4/13

The problem consists of three questions: 1. (a) Calculate the amount Mr. Solo paid for a home theatr...

PercentageBase ConversionFormula ManipulationSquare RootsSignificant Figures
2025/4/13

(a) Find the coefficient of $x^4y^2$ in the binomial expansion of $(2x+y)^6$. (b) Find the fifth ter...

Binomial TheoremPolynomial ExpansionCombinationsCoefficients
2025/4/13

The problem defines a sequence $(U_n)_{n \in \mathbb{N}}$ by $U_0 = 1$ and $U_{n+1} = \frac{2U_n}{U_...

SequencesSeriesArithmetic SequenceRecurrence RelationSummation
2025/4/13

The problem requires us to find the first four terms of the binomial expansion of $\sqrt[3]{1+x}$ an...

Binomial TheoremSeries ExpansionApproximationCube Roots
2025/4/13

We need to solve the equation $40 - x + x + 312 - x = 400$ for $x$.

Linear EquationsSolving EquationsSimplification
2025/4/12