We need to find the absolute value and the square roots of the following complex numbers: a. $3 + 2i$ b. $15 + 8i$ c. $6 + 2i$

AlgebraComplex NumbersAbsolute ValueSquare Roots
2025/4/9

1. Problem Description

We need to find the absolute value and the square roots of the following complex numbers:
a. 3+2i3 + 2i
b. 15+8i15 + 8i
c. 6+2i6 + 2i

2. Solution Steps

a. For 3+2i3 + 2i:
Absolute value:
The absolute value of a complex number a+bia + bi is given by a2+b2\sqrt{a^2 + b^2}.
So, the absolute value of 3+2i3 + 2i is 32+22=9+4=13\sqrt{3^2 + 2^2} = \sqrt{9 + 4} = \sqrt{13}.
Square roots:
Let 3+2i=x+yi\sqrt{3 + 2i} = x + yi, where xx and yy are real numbers.
Squaring both sides, we get 3+2i=(x+yi)2=x2+2xyiy2=(x2y2)+2xyi3 + 2i = (x + yi)^2 = x^2 + 2xyi - y^2 = (x^2 - y^2) + 2xyi.
Equating the real and imaginary parts, we have:
x2y2=3x^2 - y^2 = 3
2xy=22xy = 2, so xy=1xy = 1 and y=1xy = \frac{1}{x}.
Substituting y=1xy = \frac{1}{x} into x2y2=3x^2 - y^2 = 3, we get x21x2=3x^2 - \frac{1}{x^2} = 3.
Multiplying by x2x^2, we have x41=3x2x^4 - 1 = 3x^2, so x43x21=0x^4 - 3x^2 - 1 = 0.
Let u=x2u = x^2. Then u23u1=0u^2 - 3u - 1 = 0.
Using the quadratic formula, u=(3)±(3)24(1)(1)2(1)=3±9+42=3±132u = \frac{-(-3) \pm \sqrt{(-3)^2 - 4(1)(-1)}}{2(1)} = \frac{3 \pm \sqrt{9 + 4}}{2} = \frac{3 \pm \sqrt{13}}{2}.
Since xx is real, x2x^2 must be positive. So we take the positive root, u=x2=3+132u = x^2 = \frac{3 + \sqrt{13}}{2}.
x=±3+132x = \pm \sqrt{\frac{3 + \sqrt{13}}{2}}.
If x=3+132x = \sqrt{\frac{3 + \sqrt{13}}{2}}, then y=1x=13+132=23+13=2(313)(3+13)(313)=6213913=62134=1332y = \frac{1}{x} = \frac{1}{\sqrt{\frac{3 + \sqrt{13}}{2}}} = \sqrt{\frac{2}{3 + \sqrt{13}}} = \sqrt{\frac{2(3 - \sqrt{13})}{(3 + \sqrt{13})(3 - \sqrt{13})}} = \sqrt{\frac{6 - 2\sqrt{13}}{9 - 13}} = \sqrt{\frac{6 - 2\sqrt{13}}{-4}} = \sqrt{\frac{\sqrt{13} - 3}{2}}.
If x=3+132x = -\sqrt{\frac{3 + \sqrt{13}}{2}}, then y=1332y = -\sqrt{\frac{\sqrt{13} - 3}{2}}.
Thus, the square roots are ±(3+132+i1332)\pm \left( \sqrt{\frac{3 + \sqrt{13}}{2}} + i\sqrt{\frac{\sqrt{13} - 3}{2}} \right).
b. For 15+8i15 + 8i:
Absolute value:
The absolute value of 15+8i15 + 8i is 152+82=225+64=289=17\sqrt{15^2 + 8^2} = \sqrt{225 + 64} = \sqrt{289} = 17.
Square roots:
Let 15+8i=x+yi\sqrt{15 + 8i} = x + yi.
Squaring both sides, we get 15+8i=(x+yi)2=(x2y2)+2xyi15 + 8i = (x + yi)^2 = (x^2 - y^2) + 2xyi.
Equating the real and imaginary parts, we have:
x2y2=15x^2 - y^2 = 15
2xy=82xy = 8, so xy=4xy = 4 and y=4xy = \frac{4}{x}.
Substituting y=4xy = \frac{4}{x} into x2y2=15x^2 - y^2 = 15, we get x216x2=15x^2 - \frac{16}{x^2} = 15.
Multiplying by x2x^2, we have x416=15x2x^4 - 16 = 15x^2, so x415x216=0x^4 - 15x^2 - 16 = 0.
Let u=x2u = x^2. Then u215u16=0u^2 - 15u - 16 = 0.
(u16)(u+1)=0(u - 16)(u + 1) = 0.
Since xx is real, x2x^2 must be positive. So we take the positive root, u=x2=16u = x^2 = 16.
x=±4x = \pm 4.
If x=4x = 4, then y=44=1y = \frac{4}{4} = 1.
If x=4x = -4, then y=44=1y = \frac{4}{-4} = -1.
Thus, the square roots are ±(4+i)\pm (4 + i).
c. For 6+2i6 + 2i:
Absolute value:
The absolute value of 6+2i6 + 2i is 62+22=36+4=40=210\sqrt{6^2 + 2^2} = \sqrt{36 + 4} = \sqrt{40} = 2\sqrt{10}.
Square roots:
Let 6+2i=x+yi\sqrt{6 + 2i} = x + yi.
Squaring both sides, we get 6+2i=(x+yi)2=(x2y2)+2xyi6 + 2i = (x + yi)^2 = (x^2 - y^2) + 2xyi.
Equating the real and imaginary parts, we have:
x2y2=6x^2 - y^2 = 6
2xy=22xy = 2, so xy=1xy = 1 and y=1xy = \frac{1}{x}.
Substituting y=1xy = \frac{1}{x} into x2y2=6x^2 - y^2 = 6, we get x21x2=6x^2 - \frac{1}{x^2} = 6.
Multiplying by x2x^2, we have x41=6x2x^4 - 1 = 6x^2, so x46x21=0x^4 - 6x^2 - 1 = 0.
Let u=x2u = x^2. Then u26u1=0u^2 - 6u - 1 = 0.
Using the quadratic formula, u=(6)±(6)24(1)(1)2(1)=6±36+42=6±402=6±2102=3±10u = \frac{-(-6) \pm \sqrt{(-6)^2 - 4(1)(-1)}}{2(1)} = \frac{6 \pm \sqrt{36 + 4}}{2} = \frac{6 \pm \sqrt{40}}{2} = \frac{6 \pm 2\sqrt{10}}{2} = 3 \pm \sqrt{10}.
Since xx is real, x2x^2 must be positive. So we take the positive root, u=x2=3+10u = x^2 = 3 + \sqrt{10}.
x=±3+10x = \pm \sqrt{3 + \sqrt{10}}.
If x=3+10x = \sqrt{3 + \sqrt{10}}, then y=1x=13+10=13+10=310910=3101=103y = \frac{1}{x} = \frac{1}{\sqrt{3 + \sqrt{10}}} = \sqrt{\frac{1}{3 + \sqrt{10}}} = \sqrt{\frac{3 - \sqrt{10}}{9 - 10}} = \sqrt{\frac{3 - \sqrt{10}}{-1}} = \sqrt{\sqrt{10} - 3}.
If x=3+10x = -\sqrt{3 + \sqrt{10}}, then y=103y = -\sqrt{\sqrt{10} - 3}.
Thus, the square roots are ±(3+10+i103)\pm (\sqrt{3 + \sqrt{10}} + i\sqrt{\sqrt{10} - 3}).

3. Final Answer

a. Absolute value: 13\sqrt{13}. Square roots: ±(3+132+i1332)\pm \left( \sqrt{\frac{3 + \sqrt{13}}{2}} + i\sqrt{\frac{\sqrt{13} - 3}{2}} \right).
b. Absolute value: 1717. Square roots: ±(4+i)\pm (4 + i).
c. Absolute value: 2102\sqrt{10}. Square roots: ±(3+10+i103)\pm (\sqrt{3 + \sqrt{10}} + i\sqrt{\sqrt{10} - 3}).

Related problems in "Algebra"

The problem asks to simplify the expression $a + a$.

SimplificationAlgebraic ExpressionsCombining Like Terms
2025/4/14

The problem gives an equation $z = \sqrt{16 - x^2 - y^2}$. We are asked to solve the problem. The ...

FunctionsDomainRangeInequalitiesSquare Roots
2025/4/14

The problem has two parts: (a) involves linear transformations and matrices, and (b) involves polyno...

Linear TransformationsMatricesMatrix MultiplicationMatrix InversePolynomialsRemainder TheoremQuadratic Equations
2025/4/13

We are given a set of multiple-choice questions involving calculus concepts, likely for a calculus e...

ExponentsLogarithmsEquations
2025/4/13

Given that $(x+2)$ and $(2x+3)$ are factors of $f(x) = 6x^3 + px^2 + 4x - q$, we need to find the va...

PolynomialsFactor TheoremPolynomial DivisionRoots of PolynomialsCubic EquationsSystems of Equations
2025/4/13

The problem describes an arithmetic progression (AP) of houses built each year starting from 2001. W...

Arithmetic ProgressionSequences and SeriesWord Problems
2025/4/13

The problem consists of three questions: 1. (a) Calculate the amount Mr. Solo paid for a home theatr...

PercentageBase ConversionFormula ManipulationSquare RootsSignificant Figures
2025/4/13

(a) Find the coefficient of $x^4y^2$ in the binomial expansion of $(2x+y)^6$. (b) Find the fifth ter...

Binomial TheoremPolynomial ExpansionCombinationsCoefficients
2025/4/13

The problem defines a sequence $(U_n)_{n \in \mathbb{N}}$ by $U_0 = 1$ and $U_{n+1} = \frac{2U_n}{U_...

SequencesSeriesArithmetic SequenceRecurrence RelationSummation
2025/4/13

The problem requires us to find the first four terms of the binomial expansion of $\sqrt[3]{1+x}$ an...

Binomial TheoremSeries ExpansionApproximationCube Roots
2025/4/13