Absolute value:
The absolute value of a complex number a+bi is given by a2+b2. So, the absolute value of 3+2i is 32+22=9+4=13. Square roots:
Let 3+2i=x+yi, where x and y are real numbers. Squaring both sides, we get 3+2i=(x+yi)2=x2+2xyi−y2=(x2−y2)+2xyi. Equating the real and imaginary parts, we have:
x2−y2=3 2xy=2, so xy=1 and y=x1. Substituting y=x1 into x2−y2=3, we get x2−x21=3. Multiplying by x2, we have x4−1=3x2, so x4−3x2−1=0. Let u=x2. Then u2−3u−1=0. Using the quadratic formula, u=2(1)−(−3)±(−3)2−4(1)(−1)=23±9+4=23±13. Since x is real, x2 must be positive. So we take the positive root, u=x2=23+13. x=±23+13. If x=23+13, then y=x1=23+131=3+132=(3+13)(3−13)2(3−13)=9−136−213=−46−213=213−3. If x=−23+13, then y=−213−3. Thus, the square roots are ±(23+13+i213−3). b. For 15+8i: Absolute value:
The absolute value of 15+8i is 152+82=225+64=289=17. Square roots:
Let 15+8i=x+yi. Squaring both sides, we get 15+8i=(x+yi)2=(x2−y2)+2xyi. Equating the real and imaginary parts, we have:
x2−y2=15 2xy=8, so xy=4 and y=x4. Substituting y=x4 into x2−y2=15, we get x2−x216=15. Multiplying by x2, we have x4−16=15x2, so x4−15x2−16=0. Let u=x2. Then u2−15u−16=0. (u−16)(u+1)=0. Since x is real, x2 must be positive. So we take the positive root, u=x2=16. If x=4, then y=44=1. If x=−4, then y=−44=−1. Thus, the square roots are ±(4+i). Absolute value:
The absolute value of 6+2i is 62+22=36+4=40=210. Square roots:
Let 6+2i=x+yi. Squaring both sides, we get 6+2i=(x+yi)2=(x2−y2)+2xyi. Equating the real and imaginary parts, we have:
x2−y2=6 2xy=2, so xy=1 and y=x1. Substituting y=x1 into x2−y2=6, we get x2−x21=6. Multiplying by x2, we have x4−1=6x2, so x4−6x2−1=0. Let u=x2. Then u2−6u−1=0. Using the quadratic formula, u=2(1)−(−6)±(−6)2−4(1)(−1)=26±36+4=26±40=26±210=3±10. Since x is real, x2 must be positive. So we take the positive root, u=x2=3+10. x=±3+10. If x=3+10, then y=x1=3+101=3+101=9−103−10=−13−10=10−3. If x=−3+10, then y=−10−3. Thus, the square roots are ±(3+10+i10−3).