First, we simplify the number inside the square root:
54=2⋅27=2⋅33=2⋅32⋅3=9⋅6. Then, we consider the powers of x, y, and z: x4=(x2)2 y7=y6⋅y=(y3)2⋅y z6=(z3)2 Now, we can rewrite the expression:
354x4y7z6=39⋅6⋅x4⋅y6⋅y⋅z6=332⋅6⋅(x2)2⋅(y3)2⋅y⋅(z3)2. We can take out the perfect squares from under the square root:
332⋅(x2)2⋅(y3)2⋅(z3)2⋅6y=3⋅3⋅x2⋅y3⋅z36y=9x2y3z36y.