The problem is to evaluate the expression $(2\frac{1}{27} \times 1\frac{1}{9}) \div 1\frac{5}{6}$. This involves mixed numbers, multiplication, and division.

ArithmeticFractionsMixed NumbersMultiplicationDivisionSimplification
2025/4/11

1. Problem Description

The problem is to evaluate the expression (2127×119)÷156(2\frac{1}{27} \times 1\frac{1}{9}) \div 1\frac{5}{6}. This involves mixed numbers, multiplication, and division.

2. Solution Steps

First, convert the mixed numbers to improper fractions.
2127=2×27+127=54+127=55272\frac{1}{27} = \frac{2 \times 27 + 1}{27} = \frac{54 + 1}{27} = \frac{55}{27}
119=1×9+19=9+19=1091\frac{1}{9} = \frac{1 \times 9 + 1}{9} = \frac{9 + 1}{9} = \frac{10}{9}
156=1×6+56=6+56=1161\frac{5}{6} = \frac{1 \times 6 + 5}{6} = \frac{6 + 5}{6} = \frac{11}{6}
Now, substitute the improper fractions into the original expression.
(5527×109)÷116(\frac{55}{27} \times \frac{10}{9}) \div \frac{11}{6}
Multiply the first two fractions:
5527×109=55×1027×9=550243\frac{55}{27} \times \frac{10}{9} = \frac{55 \times 10}{27 \times 9} = \frac{550}{243}
Now, divide the result by 116\frac{11}{6}. Dividing by a fraction is the same as multiplying by its reciprocal.
550243÷116=550243×611\frac{550}{243} \div \frac{11}{6} = \frac{550}{243} \times \frac{6}{11}
550243×611=550×6243×11=33002673\frac{550}{243} \times \frac{6}{11} = \frac{550 \times 6}{243 \times 11} = \frac{3300}{2673}
Now, simplify the fraction. We can divide both the numerator and the denominator by
3

3. $\frac{3300 \div 33}{2673 \div 33} = \frac{100}{81}$

3. Final Answer

10081\frac{100}{81}