The problem asks us to find the sum of the series $\sum_{n=1}^{\infty} \frac{x^n}{3^n}$.

AnalysisSeriesGeometric SeriesConvergenceSummation
2025/3/14

1. Problem Description

The problem asks us to find the sum of the series n=1xn3n\sum_{n=1}^{\infty} \frac{x^n}{3^n}.

2. Solution Steps

The given series can be rewritten as:
n=1xn3n=n=1(x3)n\sum_{n=1}^{\infty} \frac{x^n}{3^n} = \sum_{n=1}^{\infty} (\frac{x}{3})^n.
This is a geometric series with first term a=x3a = \frac{x}{3} and common ratio r=x3r = \frac{x}{3}.
A geometric series n=1arn1\sum_{n=1}^{\infty} ar^{n-1} converges to a1r\frac{a}{1-r} if r<1|r| < 1. In our case, we have n=1arn\sum_{n=1}^{\infty} ar^{n}.
Then, n=1(x3)n=n=1x3(x3)n1\sum_{n=1}^{\infty} (\frac{x}{3})^n = \sum_{n=1}^{\infty} \frac{x}{3} (\frac{x}{3})^{n-1}. So, a=x3a = \frac{x}{3} and r=x3r = \frac{x}{3}.
The series converges if r=x3<1|r| = |\frac{x}{3}| < 1, which means x<3|x| < 3 or 3<x<3-3 < x < 3.
The sum of the geometric series is given by:
S=a1r=x31x3=x33x3=x3xS = \frac{a}{1-r} = \frac{\frac{x}{3}}{1-\frac{x}{3}} = \frac{\frac{x}{3}}{\frac{3-x}{3}} = \frac{x}{3-x}.
The sum of a geometric series n=0rn\sum_{n=0}^{\infty} r^n is 11r\frac{1}{1-r} for r<1|r|<1.
Here we have n=1(x3)n=n=0(x3)n(x3)0=11x31=13x31=33x1=3(3x)3x=x3x\sum_{n=1}^{\infty} (\frac{x}{3})^n = \sum_{n=0}^{\infty} (\frac{x}{3})^n - (\frac{x}{3})^0 = \frac{1}{1-\frac{x}{3}} - 1 = \frac{1}{\frac{3-x}{3}} - 1 = \frac{3}{3-x} - 1 = \frac{3-(3-x)}{3-x} = \frac{x}{3-x}.

3. Final Answer

x3x\frac{x}{3-x}

Related problems in "Analysis"

We are asked to evaluate two integrals using the given substitutions. The integrals are: (a) $\int \...

IntegrationSubstitutionDefinite IntegralsIndefinite IntegralsCalculus
2025/6/27

We are given a set of statements about basic concepts in calculus and asked to determine if they are...

CalculusDerivativesAntiderivativesLocal ExtremaIncreasing/Decreasing FunctionsDifferentiabilityCritical PointsMean Value Theorem
2025/6/27

The problem asks to find the domain of the function $f(x) = \sqrt{1 - \frac{x+13}{x^2+4x+3}}$ and to...

DomainContinuityInequalitiesRational FunctionsLimits
2025/6/27

## 1. Problem Description

DomainContinuityFunctionsSquare RootGreatest Integer FunctionInequalities
2025/6/27

The problem consists of four parts: a) Express $25\cosh x - 24\sinh x$ in the form $R\cosh(x-\alpha)...

Hyperbolic FunctionsCalculusIntegrationDerivativesCritical PointsDefinite IntegralsSubstitution
2025/6/27

The problem consists of four parts: a) Compute two limits: (i) $\lim_{x \to 0} \frac{\sin^{2025}(-x)...

LimitsDerivativesLogarithmic DifferentiationNewton's Law of CoolingQuadratic Equations
2025/6/27

The problem consists of three parts: (a) Evaluate the limit: $\lim_{x \to 1} \frac{|2x-3| - |2x-1|}{...

LimitsInverse Hyperbolic FunctionsHyperbolic FunctionsTrigonometry
2025/6/27

The problem consists of three questions. Question A1 requires the definition of an accumulation poin...

LimitsAccumulation PointContinuityDifferentiabilityEpsilon-Delta DefinitionProduct RuleFirst PrincipleDerivatives
2025/6/27

We are given a function $f(x) = \frac{1}{\lfloor 3x - 2 \rfloor}$, where $\lfloor x \rfloor$ denotes...

DomainContinuityFloor FunctionLimits
2025/6/27

We are asked to prove, using the precise definition of a limit, that $\lim_{x \to 10} (3 - \frac{4}{...

LimitsEpsilon-Delta DefinitionLimits at InfinityCalculus
2025/6/27