The problem asks us to find the sum of the series $\sum_{n=1}^{\infty} \frac{x^n}{3^n}$.

AnalysisSeriesGeometric SeriesConvergenceSummation
2025/3/14

1. Problem Description

The problem asks us to find the sum of the series n=1xn3n\sum_{n=1}^{\infty} \frac{x^n}{3^n}.

2. Solution Steps

The given series can be rewritten as:
n=1xn3n=n=1(x3)n\sum_{n=1}^{\infty} \frac{x^n}{3^n} = \sum_{n=1}^{\infty} (\frac{x}{3})^n.
This is a geometric series with first term a=x3a = \frac{x}{3} and common ratio r=x3r = \frac{x}{3}.
A geometric series n=1arn1\sum_{n=1}^{\infty} ar^{n-1} converges to a1r\frac{a}{1-r} if r<1|r| < 1. In our case, we have n=1arn\sum_{n=1}^{\infty} ar^{n}.
Then, n=1(x3)n=n=1x3(x3)n1\sum_{n=1}^{\infty} (\frac{x}{3})^n = \sum_{n=1}^{\infty} \frac{x}{3} (\frac{x}{3})^{n-1}. So, a=x3a = \frac{x}{3} and r=x3r = \frac{x}{3}.
The series converges if r=x3<1|r| = |\frac{x}{3}| < 1, which means x<3|x| < 3 or 3<x<3-3 < x < 3.
The sum of the geometric series is given by:
S=a1r=x31x3=x33x3=x3xS = \frac{a}{1-r} = \frac{\frac{x}{3}}{1-\frac{x}{3}} = \frac{\frac{x}{3}}{\frac{3-x}{3}} = \frac{x}{3-x}.
The sum of a geometric series n=0rn\sum_{n=0}^{\infty} r^n is 11r\frac{1}{1-r} for r<1|r|<1.
Here we have n=1(x3)n=n=0(x3)n(x3)0=11x31=13x31=33x1=3(3x)3x=x3x\sum_{n=1}^{\infty} (\frac{x}{3})^n = \sum_{n=0}^{\infty} (\frac{x}{3})^n - (\frac{x}{3})^0 = \frac{1}{1-\frac{x}{3}} - 1 = \frac{1}{\frac{3-x}{3}} - 1 = \frac{3}{3-x} - 1 = \frac{3-(3-x)}{3-x} = \frac{x}{3-x}.

3. Final Answer

x3x\frac{x}{3-x}

Related problems in "Analysis"

Given the function $f(x) = \frac{x^2+3}{x+1}$, we need to: 1. Determine the domain of definition of ...

FunctionsLimitsDerivativesDomain and RangeAsymptotesFunction Analysis
2025/4/3

We need to evaluate the limit: $\lim_{x \to +\infty} \ln\left(\frac{(2x+1)^2}{2x^2+3x}\right)$.

LimitsLogarithmsAsymptotic Analysis
2025/4/1

We are asked to solve the integral $\int \frac{1}{\sqrt{100-8x^2}} dx$.

IntegrationDefinite IntegralsSubstitutionTrigonometric Functions
2025/4/1

We are given the function $f(x) = \cosh(6x - 7)$ and asked to find $f'(0)$.

DifferentiationHyperbolic FunctionsChain Rule
2025/4/1

We are asked to evaluate the indefinite integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$. We need to find...

IntegrationIndefinite IntegralSubstitutionInverse Hyperbolic Functionssech⁻¹
2025/4/1

The problem asks us to evaluate the integral $\int -\frac{dx}{2x\sqrt{1-4x^2}}$.

IntegrationDefinite IntegralSubstitutionTrigonometric Substitution
2025/4/1

We are asked to evaluate the definite integral $\int_{\frac{7}{2\sqrt{3}}}^{\frac{7\sqrt{3}}{2}} \fr...

Definite IntegralIntegrationTrigonometric SubstitutionInverse Trigonometric Functions
2025/4/1

We are asked to find the derivative of the function $f(x) = (x+2)^x$ using logarithmic differentiati...

DifferentiationLogarithmic DifferentiationChain RuleProduct RuleDerivatives
2025/4/1

We need to evaluate the integral $\int \frac{e^x}{e^{3x}-8} dx$.

IntegrationCalculusPartial FractionsTrigonometric Substitution
2025/4/1

We are asked to evaluate the integral: $\int \frac{e^{2x}}{e^{3x}-8} dx$

IntegrationCalculusSubstitutionPartial FractionsTrigonometric Substitution
2025/4/1