The problem consists of four parts: a) Express $25\cosh x - 24\sinh x$ in the form $R\cosh(x-\alpha)$, where $R > 0$ and $\alpha > 0$. b) If $f(x) = 25\cosh x - 24\sinh x$, find the critical number of $f$ and classify it. c) Let $a, b \ge 0$. If $f$ is continuous on $\mathbb{R}$ and $\int_a^b f(t) dt = 10$, find $\int_{\sqrt{b}}^{\sqrt{a}} xf(x^2) dx$. d) Evaluate the integral $\int \cos \theta \sin^2 \theta d\theta$ using the substitution $u = \sin \theta$.

AnalysisHyperbolic FunctionsCalculusIntegrationDerivativesCritical PointsDefinite IntegralsSubstitution
2025/6/27

1. Problem Description

The problem consists of four parts:
a) Express 25coshx24sinhx25\cosh x - 24\sinh x in the form Rcosh(xα)R\cosh(x-\alpha), where R>0R > 0 and α>0\alpha > 0.
b) If f(x)=25coshx24sinhxf(x) = 25\cosh x - 24\sinh x, find the critical number of ff and classify it.
c) Let a,b0a, b \ge 0. If ff is continuous on R\mathbb{R} and abf(t)dt=10\int_a^b f(t) dt = 10, find baxf(x2)dx\int_{\sqrt{b}}^{\sqrt{a}} xf(x^2) dx.
d) Evaluate the integral cosθsin2θdθ\int \cos \theta \sin^2 \theta d\theta using the substitution u=sinθu = \sin \theta.

2. Solution Steps

a)
We are given the identity cosh(A±B)=coshAcoshB±sinhAsinhB\cosh(A \pm B) = \cosh A \cosh B \pm \sinh A \sinh B.
We want to express 25coshx24sinhx25\cosh x - 24\sinh x in the form Rcosh(xα)R\cosh(x-\alpha).
Rcosh(xα)=R(coshxcoshαsinhxsinhα)=RcoshαcoshxRsinhαsinhxR\cosh(x-\alpha) = R(\cosh x \cosh \alpha - \sinh x \sinh \alpha) = R\cosh \alpha \cosh x - R\sinh \alpha \sinh x.
Equating the coefficients of coshx\cosh x and sinhx\sinh x, we get:
Rcoshα=25R\cosh \alpha = 25
Rsinhα=24R\sinh \alpha = 24
Dividing the second equation by the first, we get:
tanhα=RsinhαRcoshα=2425\tanh \alpha = \frac{R\sinh \alpha}{R\cosh \alpha} = \frac{24}{25}
α=tanh1(2425)\alpha = \tanh^{-1}\left(\frac{24}{25}\right)
Squaring both equations and subtracting the second squared equation from the first squared equation, we get:
R2cosh2αR2sinh2α=252242R^2\cosh^2 \alpha - R^2\sinh^2 \alpha = 25^2 - 24^2
R2(cosh2αsinh2α)=625576R^2(\cosh^2 \alpha - \sinh^2 \alpha) = 625 - 576
R2(1)=49R^2(1) = 49
R=49=7R = \sqrt{49} = 7 (since R>0R > 0)
So, R=7R = 7 and α=tanh1(2425)\alpha = \tanh^{-1}\left(\frac{24}{25}\right).
b)
f(x)=25coshx24sinhx=7cosh(xα)f(x) = 25\cosh x - 24\sinh x = 7\cosh(x-\alpha), where α=tanh1(2425)\alpha = \tanh^{-1}\left(\frac{24}{25}\right).
To find the critical number, we need to find the derivative of f(x)f(x) and set it to

0. $f'(x) = 7\sinh(x-\alpha)$

Setting f(x)=0f'(x) = 0, we get:
7sinh(xα)=07\sinh(x-\alpha) = 0
sinh(xα)=0\sinh(x-\alpha) = 0
xα=0x - \alpha = 0
x=α=tanh1(2425)x = \alpha = \tanh^{-1}\left(\frac{24}{25}\right)
To classify the critical number, we find the second derivative:
f(x)=7cosh(xα)f''(x) = 7\cosh(x-\alpha)
f(α)=7cosh(αα)=7cosh(0)=7(1)=7>0f''(\alpha) = 7\cosh(\alpha - \alpha) = 7\cosh(0) = 7(1) = 7 > 0
Since f(α)>0f''(\alpha) > 0, the critical number is a local minimum.
c)
Let u=x2u = x^2. Then du=2xdxdu = 2x dx, so xdx=12dux dx = \frac{1}{2}du.
When x=bx = \sqrt{b}, u=(b)2=bu = (\sqrt{b})^2 = b.
When x=ax = \sqrt{a}, u=(a)2=au = (\sqrt{a})^2 = a.
So, the integral becomes:
baxf(x2)dx=baf(u)12du=12baf(u)du=12abf(u)du\int_{\sqrt{b}}^{\sqrt{a}} xf(x^2) dx = \int_b^a f(u) \frac{1}{2} du = \frac{1}{2}\int_b^a f(u) du = -\frac{1}{2}\int_a^b f(u) du
Given that abf(t)dt=10\int_a^b f(t) dt = 10, we have:
12abf(u)du=12(10)=5-\frac{1}{2}\int_a^b f(u) du = -\frac{1}{2}(10) = -5
d)
Given cosθsin2θdθ\int \cos \theta \sin^2 \theta d\theta and u=sinθu = \sin \theta, then du=cosθdθdu = \cos \theta d\theta.
So, the integral becomes:
cosθsin2θdθ=u2du=13u3+C=13sin3θ+C\int \cos \theta \sin^2 \theta d\theta = \int u^2 du = \frac{1}{3}u^3 + C = \frac{1}{3}\sin^3 \theta + C

3. Final Answer

a) R=7R=7, α=tanh1(2425)\alpha = \tanh^{-1}\left(\frac{24}{25}\right)
b) Critical number: x=tanh1(2425)x = \tanh^{-1}\left(\frac{24}{25}\right), Local minimum
c) 5-5
d) 13sin3θ+C\frac{1}{3}\sin^3 \theta + C

Related problems in "Analysis"

The problem asks us to draw the tangent line to the curve $y = 3x^5 - 5x^4$ at the inflection point ...

CalculusDerivativesTangent LinesInflection PointsCurve Analysis
2025/6/29

The problem asks us to determine the concavity of the given curves and find their inflection points,...

CalculusDerivativesSecond DerivativeConcavityInflection Points
2025/6/29

The problem asks to find the following limits of the function $f(x)$ based on the given graph: $\lim...

LimitsFunctionsGraphical AnalysisAsymptotes
2025/6/28

The problem asks us to analyze the graph of the function $f(x)$, which is composed of a parabola, a ...

LimitsFunctionsPiecewise FunctionsAsymptotes
2025/6/28

The problem asks us to evaluate four limits based on the provided graph of a function $f(x)$. The li...

LimitsFunctionsGraph AnalysisOne-sided Limits
2025/6/28

The problem asks us to evaluate three limits, $A$, $B$, and $C$. $A = \lim_{x\to1} \frac{1+x}{\sqrt{...

LimitsCalculusIndeterminate FormsRationalizationL'Hopital's Rule (implied)
2025/6/28

The problem asks us to find the surface area of the solid generated by revolving the curve $y = x^{3...

CalculusSurface AreaSolid of RevolutionIntegrationDefinite IntegralApproximation
2025/6/28

The problem asks to find the volume of the solid generated by revolving the region bounded by the cu...

CalculusVolume of RevolutionIntegrationWasher Method
2025/6/28

The problem provides a function $f(x) = -x + 4 + \ln(\frac{x+1}{x-1})$ defined on the interval $(1, ...

LimitsDerivativesAsymptotesFunction AnalysisTangent LinesLogarithmic Functions
2025/6/28

Find the derivative of the function $g(x) = x^2 - 8\ln{x} - 1$.

CalculusDifferentiationDerivativesLogarithmic Functions
2025/6/28