First, let's simplify the expression by multiplying both the numerator and denominator by e−(a+b)x: (1+eax)(1+ebx)eax−ebx=1+eax+ebx+e(a+b)xeax−ebx=(e−ax+1)(e−bx+1)e−bx−e−axe−(a+b)x⋅e(a+b)x=1+e−ax+e−bx+e−(a+b)xe−bx−e−axe−(a+b)xe(a+b)x Multiplying numerator and denominator by e−(a+b)x: (1+eax)(1+ebx)eax−ebx=1+eax+ebx+e(a+b)xeax−ebx⋅e−(a+b)xe−(a+b)x=(1+e−ax)(1+e−bx)e−bx−e−ax Let u=e−ax and v=e−bx I=∫0∞(1+eax)(1+ebx)eax−ebxdx I=∫0∞(1+eax)(1+ebx)eaxdx−∫0∞(1+eax)(1+ebx)ebxdx Now, we divide the numerator and the denominator of the first integral by eax: ∫0∞(1+eax)(e−ax+e(b−a)x)1dx=∫0∞e−ax+1+e(b−a)x+ebx1 Divide the numerator and denominator by eax (1+eax)(1+ebx)eax−ebx=(1+e−ax)(1+e−bx)e−bx−e−ax 1+e−bx+e−ax+e−(a+b)xe−bx−e−ax Let I=∫0∞(1+eax)(1+ebx)eax−ebxdx=∫0∞1+eax+ebx+e(a+b)xeax−ebxdx. We can rewrite it as:
I=∫0∞1+eax+ebx+e(a+b)xeaxdx−∫0∞1+eax+ebx+e(a+b)xebxdx =∫0∞1+eaxeax1+ebx1dx−∫0∞1+ebxebx1+eax1dx. We can also rewrite the integral as:
I=∫0∞(1+eax)(1+ebx)eax−ebxdx=∫0∞1+eax+ebx+e(a+b)xeax−ebxdx I=∫0∞(1+eax)(1+ebx)eax+1−ebx−1dx=∫0∞(1+eax)(1+ebx)eax+1dx−∫0∞(1+eax)(1+ebx)ebx+1dx =∫0∞1+ebx1dx−∫0∞1+eax1dx=∫0∞1+ebx1−1+eax1dx =∫0∞(1+ebx)(1+eax)1+eax−1−ebxdx=∫0∞(1+ebx)(1+eax)eax−ebxdx I=∫0∞1+ebx1dx−∫0∞1+eax1dx=∫0∞e−bx+1e−bxdx−∫0∞e−ax+1e−axdx =[−b1ln(e−bx+1)]0∞−[−a1ln(e−ax+1)]0∞=[−b1ln(0+1)+b1ln(1+1)]−[−a1ln(0+1)+a1ln(1+1)] =bln2−aln2=ln2(b1−a1)=ln2(aba−b) But, notice that the integrand is anti-symmetric under the exchange of a and b.
So, I=∫0∞(1+eax)(1+ebx)eax−ebxdx=∫0∞(1+eax)(1+ebx)eaxdx−∫0∞(1+eax)(1+ebx)ebxdx =b1ln(12)−a1ln(12) Then:
a1ln∣1+e0∣−a1limx→∞ln∣1+e−ax∣= ln 2/a Final Answer: The final answer is ln(2)(aba−b)