We need to evaluate the definite integral: $\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})} dx$

AnalysisDefinite IntegralCalculusIntegration TechniquesExponential Functions
2025/4/12

1. Problem Description

We need to evaluate the definite integral:
0+eaxebx(1+eax)(1+ebx)dx\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})} dx

2. Solution Steps

First, let's simplify the expression by multiplying both the numerator and denominator by e(a+b)xe^{-(a+b)x}:
eaxebx(1+eax)(1+ebx)=eaxebx1+eax+ebx+e(a+b)x=ebxeax(eax+1)(ebx+1)e(a+b)xe(a+b)x=ebxeax1+eax+ebx+e(a+b)xe(a+b)xe(a+b)x\frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})} = \frac{e^{ax} - e^{bx}}{1 + e^{ax} + e^{bx} + e^{(a+b)x}} = \frac{e^{-bx} - e^{-ax}}{(e^{-ax} + 1)(e^{-bx} + 1)} e^{-(a+b)x} \cdot e^{(a+b)x} = \frac{e^{-bx}-e^{-ax}}{1 + e^{-ax}+e^{-bx}+e^{-(a+b)x}} e^{-(a+b)x} e^{(a+b)x}
Multiplying numerator and denominator by e(a+b)xe^{-(a+b)x}:
eaxebx(1+eax)(1+ebx)=eaxebx1+eax+ebx+e(a+b)xe(a+b)xe(a+b)x=ebxeax(1+eax)(1+ebx)\frac{e^{ax}-e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{ax} - e^{bx}}{1 + e^{ax} + e^{bx} + e^{(a+b)x}} \cdot \frac{e^{-(a+b)x}}{e^{-(a+b)x}} = \frac{e^{-bx} - e^{-ax}}{(1 + e^{-ax})(1 + e^{-bx})}
Let u=eaxu=e^{-ax} and v=ebxv=e^{-bx}
I=0eaxebx(1+eax)(1+ebx)dxI = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})}dx
I=0eax(1+eax)(1+ebx)dx0ebx(1+eax)(1+ebx)dxI = \int_{0}^{\infty} \frac{e^{ax}}{(1 + e^{ax})(1 + e^{bx})} dx - \int_{0}^{\infty} \frac{e^{bx}}{(1 + e^{ax})(1 + e^{bx})} dx
Now, we divide the numerator and the denominator of the first integral by eaxe^{ax}:
01(1+eax)(eax+e(ba)x)dx=01eax+1+e(ba)x+ebx\int_{0}^{\infty} \frac{1}{(1 + e^{ax})(e^{-ax} + e^{(b-a)x})}dx = \int_{0}^{\infty} \frac{1}{e^{-ax}+1+e^{(b-a)x}+e^{bx}}
Divide the numerator and denominator by eaxe^{ax}
eaxebx(1+eax)(1+ebx)=ebxeax(1+eax)(1+ebx)\frac{e^{ax}-e^{bx}}{(1+e^{ax})(1+e^{bx})} = \frac{e^{-bx}-e^{-ax}}{(1+e^{-ax})(1+e^{-bx})}
ebxeax1+ebx+eax+e(a+b)x\frac{e^{-bx} - e^{-ax}}{1 + e^{-bx} + e^{-ax} + e^{-(a+b)x}}
Let I=0eaxebx(1+eax)(1+ebx)dx=0eaxebx1+eax+ebx+e(a+b)xdxI = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})}dx = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{1 + e^{ax} + e^{bx} + e^{(a+b)x}} dx.
We can rewrite it as:
I=0eax1+eax+ebx+e(a+b)xdx0ebx1+eax+ebx+e(a+b)xdxI = \int_{0}^{\infty} \frac{e^{ax}}{1 + e^{ax} + e^{bx} + e^{(a+b)x}} dx - \int_{0}^{\infty} \frac{e^{bx}}{1 + e^{ax} + e^{bx} + e^{(a+b)x}} dx
=0eax1+eax11+ebxdx0ebx1+ebx11+eaxdx= \int_{0}^{\infty} \frac{e^{ax}}{1 + e^{ax}} \frac{1}{1 + e^{bx}} dx - \int_{0}^{\infty} \frac{e^{bx}}{1 + e^{bx}} \frac{1}{1 + e^{ax}} dx.
We can also rewrite the integral as:
I=0eaxebx(1+eax)(1+ebx)dx=0eaxebx1+eax+ebx+e(a+b)xdxI = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})}dx = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{1 + e^{ax} + e^{bx} + e^{(a+b)x}} dx
I=0eax+1ebx1(1+eax)(1+ebx)dx=0eax+1(1+eax)(1+ebx)dx0ebx+1(1+eax)(1+ebx)dxI = \int_{0}^{\infty} \frac{e^{ax} + 1 - e^{bx} - 1}{(1 + e^{ax})(1 + e^{bx})} dx = \int_{0}^{\infty} \frac{e^{ax} + 1}{(1 + e^{ax})(1 + e^{bx})}dx - \int_{0}^{\infty} \frac{e^{bx} + 1}{(1 + e^{ax})(1 + e^{bx})}dx
=011+ebxdx011+eaxdx=011+ebx11+eaxdx= \int_{0}^{\infty} \frac{1}{1 + e^{bx}}dx - \int_{0}^{\infty} \frac{1}{1 + e^{ax}}dx = \int_{0}^{\infty} \frac{1}{1 + e^{bx}} - \frac{1}{1 + e^{ax}} dx
=01+eax1ebx(1+ebx)(1+eax)dx=0eaxebx(1+ebx)(1+eax)dx= \int_{0}^{\infty} \frac{1+e^{ax} - 1 - e^{bx}}{(1 + e^{bx})(1 + e^{ax})} dx = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{bx})(1 + e^{ax})} dx
I=011+ebxdx011+eaxdx=0ebxebx+1dx0eaxeax+1dxI = \int_0^{\infty} \frac{1}{1 + e^{bx}}dx - \int_0^{\infty} \frac{1}{1 + e^{ax}}dx = \int_0^{\infty} \frac{e^{-bx}}{e^{-bx} + 1}dx - \int_0^{\infty} \frac{e^{-ax}}{e^{-ax} + 1}dx
=[1bln(ebx+1)]0[1aln(eax+1)]0=[1bln(0+1)+1bln(1+1)][1aln(0+1)+1aln(1+1)]= [-\frac{1}{b} \ln(e^{-bx} + 1)]_0^{\infty} - [-\frac{1}{a} \ln(e^{-ax} + 1)]_0^{\infty} = [-\frac{1}{b} \ln(0 + 1) + \frac{1}{b} \ln(1 + 1)] - [-\frac{1}{a} \ln(0 + 1) + \frac{1}{a} \ln(1 + 1)]
=ln2bln2a=ln2(1b1a)=ln2(abab)= \frac{\ln 2}{b} - \frac{\ln 2}{a} = \ln 2 (\frac{1}{b} - \frac{1}{a}) = \ln 2 (\frac{a - b}{ab})
But, notice that the integrand is anti-symmetric under the exchange of a and b.
So, I=0eaxebx(1+eax)(1+ebx)dx=0eax(1+eax)(1+ebx)dx0ebx(1+eax)(1+ebx)dxI = \int_{0}^{\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1 + e^{bx})} dx = \int_{0}^{\infty} \frac{e^{ax}}{ (1 + e^{ax})(1 + e^{bx})} dx - \int_{0}^{\infty} \frac{e^{bx}}{(1 + e^{ax})(1 + e^{bx})} dx
=1bln(21)1aln(21) = \frac{1}{b} ln(\frac{2}{1}) - \frac{1}{a}ln(\frac{2}{1})
Then:
1aln1+e01alimxln1+eax=\frac{1}{a}ln|1 + e^{0}| - \frac{1}{a}lim_{x \to \infty}ln|1 + e^{-ax}| = ln 2/a
Final Answer: The final answer is ln(2)(abab)\ln(2)\left(\frac{a-b}{ab}\right)

3. Final Answer

ln(2)abab\ln(2)\frac{a-b}{ab}

Related problems in "Analysis"

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13

The problem states: If $(x+1)f'(x) = f(x) + \frac{1}{x}$, then $f'(\frac{1}{2}) = ?$

Differential EquationsIntegrationPartial Fraction DecompositionCalculus
2025/4/13

The problem asks us to find the value of $l$ if $\int x^2 \, dx = lx + \frac{x^3}{3} + c$, where $c$...

IntegrationDefinite IntegralsCalculusPower Rule
2025/4/13

We are given a set of questions about functions and continuity. We need to find the answers to these...

ContinuityLimitsTrigonometric FunctionsCalculus
2025/4/13