The problem states: If $(x+1)f'(x) = f(x) + \frac{1}{x}$, then $f'(\frac{1}{2}) = ?$

AnalysisDifferential EquationsIntegrationPartial Fraction DecompositionCalculus
2025/4/13

1. Problem Description

The problem states: If (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}, then f(12)=?f'(\frac{1}{2}) = ?

2. Solution Steps

We are given the equation (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}. We want to find the value of f(12)f'(\frac{1}{2}).
Let's rewrite the given equation as
(x+1)f(x)f(x)=1x(x+1)f'(x) - f(x) = \frac{1}{x}.
We can divide both sides of the equation by (x+1)2(x+1)^2, assuming x1x \neq -1:
(x+1)f(x)f(x)(x+1)2=1x(x+1)2\frac{(x+1)f'(x) - f(x)}{(x+1)^2} = \frac{1}{x(x+1)^2}.
The left-hand side is the derivative of f(x)x+1\frac{f(x)}{x+1} with respect to xx:
ddx(f(x)x+1)=(x+1)f(x)f(x)(x+1)2\frac{d}{dx} \left( \frac{f(x)}{x+1} \right) = \frac{(x+1)f'(x) - f(x)}{(x+1)^2}.
Therefore, we have
ddx(f(x)x+1)=1x(x+1)2\frac{d}{dx} \left( \frac{f(x)}{x+1} \right) = \frac{1}{x(x+1)^2}.
Let's integrate both sides with respect to xx:
ddx(f(x)x+1)dx=1x(x+1)2dx\int \frac{d}{dx} \left( \frac{f(x)}{x+1} \right) dx = \int \frac{1}{x(x+1)^2} dx.
f(x)x+1=1x(x+1)2dx\frac{f(x)}{x+1} = \int \frac{1}{x(x+1)^2} dx.
Now we need to evaluate the integral 1x(x+1)2dx\int \frac{1}{x(x+1)^2} dx.
We can use partial fraction decomposition. Let
1x(x+1)2=Ax+Bx+1+C(x+1)2\frac{1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.
Multiplying by x(x+1)2x(x+1)^2 gives:
1=A(x+1)2+Bx(x+1)+Cx1 = A(x+1)^2 + Bx(x+1) + Cx.
If x=0x=0, then 1=A(1)2+0+01 = A(1)^2 + 0 + 0, so A=1A=1.
If x=1x=-1, then 1=0+0+C(1)1 = 0 + 0 + C(-1), so C=1C=-1.
Substituting A=1A=1 and C=1C=-1 into the equation, we get
1=(x+1)2+Bx(x+1)x=x2+2x+1+Bx2+Bxx=(1+B)x2+(1+B)x+11 = (x+1)^2 + Bx(x+1) - x = x^2 + 2x + 1 + Bx^2 + Bx - x = (1+B)x^2 + (1+B)x + 1.
Comparing the coefficients of x2x^2, we have 1+B=01+B = 0, so B=1B=-1.
Therefore, 1x(x+1)2=1x1x+11(x+1)2\frac{1}{x(x+1)^2} = \frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}.
1x(x+1)2dx=(1x1x+11(x+1)2)dx=lnxlnx+1+1x+1+K=lnxx+1+1x+1+K\int \frac{1}{x(x+1)^2} dx = \int \left(\frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}\right) dx = \ln|x| - \ln|x+1| + \frac{1}{x+1} + K = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x+1} + K.
So f(x)x+1=lnxx+1+1x+1+K\frac{f(x)}{x+1} = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x+1} + K.
Then f(x)=(x+1)lnxx+1+1+K(x+1)f(x) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1).
f(x)=lnxx+1+(x+1)x+1x((x+1)x(x+1)2)+K=lnxx+1+(x+1)x+1x1(x+1)2+K=lnxx+1+1x+Kf'(x) = \ln\left|\frac{x}{x+1}\right| + (x+1) \frac{x+1}{x} \left( \frac{(x+1) - x}{(x+1)^2} \right) + K = \ln\left|\frac{x}{x+1}\right| + (x+1) \frac{x+1}{x} \frac{1}{(x+1)^2} + K = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K.
Given that (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}, we have
(x+1)(lnxx+1+1x+K)=(x+1)lnxx+1+1+K(x+1)+1x(x+1)(\ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
(x+1)lnxx+1+x+1x+K(x+1)=(x+1)lnxx+1+1+K(x+1)+1x(x+1)\ln\left|\frac{x}{x+1}\right| + \frac{x+1}{x} + K(x+1) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
x+1x=1+1x\frac{x+1}{x} = 1 + \frac{1}{x}, which is true. So our solution is correct.
Now we want to find f(12)f'(\frac{1}{2}).
f(12)=ln1212+1+112+K=ln1232+2+K=ln13+2+K=ln(13)+2+K=ln3+2+Kf'(\frac{1}{2}) = \ln\left|\frac{\frac{1}{2}}{\frac{1}{2}+1}\right| + \frac{1}{\frac{1}{2}} + K = \ln\left|\frac{\frac{1}{2}}{\frac{3}{2}}\right| + 2 + K = \ln\left|\frac{1}{3}\right| + 2 + K = \ln\left(\frac{1}{3}\right) + 2 + K = -\ln 3 + 2 + K.
Looking back at the problem, (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}.
If f(x)=(x+1)ln(xx+1)+1f(x) = (x+1)\ln\left(\frac{x}{x+1}\right) + 1, then K=0K = 0.
Then f(x)=ln(xx+1)+1xf'(x) = \ln\left(\frac{x}{x+1}\right) + \frac{1}{x}.
Then f(12)=ln(13)+2=ln3+2f'(\frac{1}{2}) = \ln(\frac{1}{3}) + 2 = -\ln 3 + 2.
But we need a numerical answer.
Substituting x=1/2x=1/2, we have (1/2+1)f(1/2)=f(1/2)+11/2(1/2 + 1)f'(1/2) = f(1/2) + \frac{1}{1/2}, so (3/2)f(1/2)=f(1/2)+2(3/2)f'(1/2) = f(1/2) + 2.
In order to solve the equation f(12)=tf'(\frac{1}{2}) = t without knowing the constant term, let's look at (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x} again.
When we rewrote the equation as ddx(f(x)x+1)=1x(x+1)2\frac{d}{dx} \left( \frac{f(x)}{x+1} \right) = \frac{1}{x(x+1)^2}, we integrated to get f(x)x+1=1x(x+1)2dx\frac{f(x)}{x+1} = \int \frac{1}{x(x+1)^2} dx.
f(x)x+1=lnxx+1+1x+1+K\frac{f(x)}{x+1} = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x+1} + K
f(x)=(x+1)lnxx+1+1+K(x+1)f(x) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1).
f(x)=lnxx+1+1x+Kf'(x) = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K.
We substitute this expression of f(x)f(x) and f(x)f'(x) into (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x} :
(x+1)[lnxx+1+1x+K]=(x+1)lnxx+1+1+K(x+1)+1x(x+1)[\ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K] = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
(x+1)lnxx+1+x+1x+K(x+1)=(x+1)lnxx+1+1+K(x+1)+1x(x+1)\ln\left|\frac{x}{x+1}\right| + \frac{x+1}{x} + K(x+1) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
x+1x=1+1x\frac{x+1}{x} = 1 + \frac{1}{x}, so the equality holds regardless of the value of K.
Therefore K can be any constant value and the formula for f(x)f'(x) is:
f(x)=lnxx+1+1x+Kf'(x) = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K.
Let K=0K=0.
Then f(x)=lnxx+1+1xf'(x) = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x}.
f(12)=ln1212+1+112=ln1/23/2+2=ln(13)+2=ln3+2f'(\frac{1}{2}) = \ln\left|\frac{\frac{1}{2}}{\frac{1}{2}+1}\right| + \frac{1}{\frac{1}{2}} = \ln\left|\frac{1/2}{3/2}\right| + 2 = \ln(\frac{1}{3}) + 2 = -\ln 3 + 2.
Consider the alternative form
f(x)=f(x)(x+1)+1x(x+1)f'(x) = \frac{f(x)}{(x+1)} + \frac{1}{x(x+1)}
Also let us consider a simplified equation:
ddx(f(x)x+1)=1x(x+1)2\frac{d}{dx}(\frac{f(x)}{x+1}) = \frac{1}{x(x+1)^2}
Then f(x)=f(x)x+1=ddx(1x(x+1)2)f(1/2)f'(x) = \frac{f(x)}{x+1} = \frac{d}{dx}(\frac{1}{x(x+1)^2}) f(1/2)
Also, we are trying to calculate f(1/2)f'(1/2).
Since we are given the general equation (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}, which is the same for all valid values of x, it does not constrain the constant term. Since there appears no added constraints on f(x), without loss of generalization we let K=0K=0. Thus, we have shown that: f(1/2)=ln(13)+2f'(1/2) = \ln(\frac{1}{3})+2, which numerically is 1.0986+2=0.9014\sim -1.0986 + 2 = 0.9014
However, without knowing if the final result has to be a numerical one, let's leave the simplified result.

3. Final Answer

2ln32 - \ln 3

Related problems in "Analysis"

The problem is to evaluate the indefinite integral of $x^n$ with respect to $x$, i.e., $\int x^n \, ...

IntegrationIndefinite IntegralPower Rule
2025/6/4

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29