The problem states: If $(x+1)f'(x) = f(x) + \frac{1}{x}$, then $f'(\frac{1}{2}) = ?$

AnalysisDifferential EquationsIntegrationPartial Fraction DecompositionCalculus
2025/4/13

1. Problem Description

The problem states: If (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}, then f(12)=?f'(\frac{1}{2}) = ?

2. Solution Steps

We are given the equation (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}. We want to find the value of f(12)f'(\frac{1}{2}).
Let's rewrite the given equation as
(x+1)f(x)f(x)=1x(x+1)f'(x) - f(x) = \frac{1}{x}.
We can divide both sides of the equation by (x+1)2(x+1)^2, assuming x1x \neq -1:
(x+1)f(x)f(x)(x+1)2=1x(x+1)2\frac{(x+1)f'(x) - f(x)}{(x+1)^2} = \frac{1}{x(x+1)^2}.
The left-hand side is the derivative of f(x)x+1\frac{f(x)}{x+1} with respect to xx:
ddx(f(x)x+1)=(x+1)f(x)f(x)(x+1)2\frac{d}{dx} \left( \frac{f(x)}{x+1} \right) = \frac{(x+1)f'(x) - f(x)}{(x+1)^2}.
Therefore, we have
ddx(f(x)x+1)=1x(x+1)2\frac{d}{dx} \left( \frac{f(x)}{x+1} \right) = \frac{1}{x(x+1)^2}.
Let's integrate both sides with respect to xx:
ddx(f(x)x+1)dx=1x(x+1)2dx\int \frac{d}{dx} \left( \frac{f(x)}{x+1} \right) dx = \int \frac{1}{x(x+1)^2} dx.
f(x)x+1=1x(x+1)2dx\frac{f(x)}{x+1} = \int \frac{1}{x(x+1)^2} dx.
Now we need to evaluate the integral 1x(x+1)2dx\int \frac{1}{x(x+1)^2} dx.
We can use partial fraction decomposition. Let
1x(x+1)2=Ax+Bx+1+C(x+1)2\frac{1}{x(x+1)^2} = \frac{A}{x} + \frac{B}{x+1} + \frac{C}{(x+1)^2}.
Multiplying by x(x+1)2x(x+1)^2 gives:
1=A(x+1)2+Bx(x+1)+Cx1 = A(x+1)^2 + Bx(x+1) + Cx.
If x=0x=0, then 1=A(1)2+0+01 = A(1)^2 + 0 + 0, so A=1A=1.
If x=1x=-1, then 1=0+0+C(1)1 = 0 + 0 + C(-1), so C=1C=-1.
Substituting A=1A=1 and C=1C=-1 into the equation, we get
1=(x+1)2+Bx(x+1)x=x2+2x+1+Bx2+Bxx=(1+B)x2+(1+B)x+11 = (x+1)^2 + Bx(x+1) - x = x^2 + 2x + 1 + Bx^2 + Bx - x = (1+B)x^2 + (1+B)x + 1.
Comparing the coefficients of x2x^2, we have 1+B=01+B = 0, so B=1B=-1.
Therefore, 1x(x+1)2=1x1x+11(x+1)2\frac{1}{x(x+1)^2} = \frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}.
1x(x+1)2dx=(1x1x+11(x+1)2)dx=lnxlnx+1+1x+1+K=lnxx+1+1x+1+K\int \frac{1}{x(x+1)^2} dx = \int \left(\frac{1}{x} - \frac{1}{x+1} - \frac{1}{(x+1)^2}\right) dx = \ln|x| - \ln|x+1| + \frac{1}{x+1} + K = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x+1} + K.
So f(x)x+1=lnxx+1+1x+1+K\frac{f(x)}{x+1} = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x+1} + K.
Then f(x)=(x+1)lnxx+1+1+K(x+1)f(x) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1).
f(x)=lnxx+1+(x+1)x+1x((x+1)x(x+1)2)+K=lnxx+1+(x+1)x+1x1(x+1)2+K=lnxx+1+1x+Kf'(x) = \ln\left|\frac{x}{x+1}\right| + (x+1) \frac{x+1}{x} \left( \frac{(x+1) - x}{(x+1)^2} \right) + K = \ln\left|\frac{x}{x+1}\right| + (x+1) \frac{x+1}{x} \frac{1}{(x+1)^2} + K = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K.
Given that (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}, we have
(x+1)(lnxx+1+1x+K)=(x+1)lnxx+1+1+K(x+1)+1x(x+1)(\ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
(x+1)lnxx+1+x+1x+K(x+1)=(x+1)lnxx+1+1+K(x+1)+1x(x+1)\ln\left|\frac{x}{x+1}\right| + \frac{x+1}{x} + K(x+1) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
x+1x=1+1x\frac{x+1}{x} = 1 + \frac{1}{x}, which is true. So our solution is correct.
Now we want to find f(12)f'(\frac{1}{2}).
f(12)=ln1212+1+112+K=ln1232+2+K=ln13+2+K=ln(13)+2+K=ln3+2+Kf'(\frac{1}{2}) = \ln\left|\frac{\frac{1}{2}}{\frac{1}{2}+1}\right| + \frac{1}{\frac{1}{2}} + K = \ln\left|\frac{\frac{1}{2}}{\frac{3}{2}}\right| + 2 + K = \ln\left|\frac{1}{3}\right| + 2 + K = \ln\left(\frac{1}{3}\right) + 2 + K = -\ln 3 + 2 + K.
Looking back at the problem, (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}.
If f(x)=(x+1)ln(xx+1)+1f(x) = (x+1)\ln\left(\frac{x}{x+1}\right) + 1, then K=0K = 0.
Then f(x)=ln(xx+1)+1xf'(x) = \ln\left(\frac{x}{x+1}\right) + \frac{1}{x}.
Then f(12)=ln(13)+2=ln3+2f'(\frac{1}{2}) = \ln(\frac{1}{3}) + 2 = -\ln 3 + 2.
But we need a numerical answer.
Substituting x=1/2x=1/2, we have (1/2+1)f(1/2)=f(1/2)+11/2(1/2 + 1)f'(1/2) = f(1/2) + \frac{1}{1/2}, so (3/2)f(1/2)=f(1/2)+2(3/2)f'(1/2) = f(1/2) + 2.
In order to solve the equation f(12)=tf'(\frac{1}{2}) = t without knowing the constant term, let's look at (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x} again.
When we rewrote the equation as ddx(f(x)x+1)=1x(x+1)2\frac{d}{dx} \left( \frac{f(x)}{x+1} \right) = \frac{1}{x(x+1)^2}, we integrated to get f(x)x+1=1x(x+1)2dx\frac{f(x)}{x+1} = \int \frac{1}{x(x+1)^2} dx.
f(x)x+1=lnxx+1+1x+1+K\frac{f(x)}{x+1} = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x+1} + K
f(x)=(x+1)lnxx+1+1+K(x+1)f(x) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1).
f(x)=lnxx+1+1x+Kf'(x) = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K.
We substitute this expression of f(x)f(x) and f(x)f'(x) into (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x} :
(x+1)[lnxx+1+1x+K]=(x+1)lnxx+1+1+K(x+1)+1x(x+1)[\ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K] = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
(x+1)lnxx+1+x+1x+K(x+1)=(x+1)lnxx+1+1+K(x+1)+1x(x+1)\ln\left|\frac{x}{x+1}\right| + \frac{x+1}{x} + K(x+1) = (x+1)\ln\left|\frac{x}{x+1}\right| + 1 + K(x+1) + \frac{1}{x}.
x+1x=1+1x\frac{x+1}{x} = 1 + \frac{1}{x}, so the equality holds regardless of the value of K.
Therefore K can be any constant value and the formula for f(x)f'(x) is:
f(x)=lnxx+1+1x+Kf'(x) = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x} + K.
Let K=0K=0.
Then f(x)=lnxx+1+1xf'(x) = \ln\left|\frac{x}{x+1}\right| + \frac{1}{x}.
f(12)=ln1212+1+112=ln1/23/2+2=ln(13)+2=ln3+2f'(\frac{1}{2}) = \ln\left|\frac{\frac{1}{2}}{\frac{1}{2}+1}\right| + \frac{1}{\frac{1}{2}} = \ln\left|\frac{1/2}{3/2}\right| + 2 = \ln(\frac{1}{3}) + 2 = -\ln 3 + 2.
Consider the alternative form
f(x)=f(x)(x+1)+1x(x+1)f'(x) = \frac{f(x)}{(x+1)} + \frac{1}{x(x+1)}
Also let us consider a simplified equation:
ddx(f(x)x+1)=1x(x+1)2\frac{d}{dx}(\frac{f(x)}{x+1}) = \frac{1}{x(x+1)^2}
Then f(x)=f(x)x+1=ddx(1x(x+1)2)f(1/2)f'(x) = \frac{f(x)}{x+1} = \frac{d}{dx}(\frac{1}{x(x+1)^2}) f(1/2)
Also, we are trying to calculate f(1/2)f'(1/2).
Since we are given the general equation (x+1)f(x)=f(x)+1x(x+1)f'(x) = f(x) + \frac{1}{x}, which is the same for all valid values of x, it does not constrain the constant term. Since there appears no added constraints on f(x), without loss of generalization we let K=0K=0. Thus, we have shown that: f(1/2)=ln(13)+2f'(1/2) = \ln(\frac{1}{3})+2, which numerically is 1.0986+2=0.9014\sim -1.0986 + 2 = 0.9014
However, without knowing if the final result has to be a numerical one, let's leave the simplified result.

3. Final Answer

2ln32 - \ln 3

Related problems in "Analysis"

The problem defines a sequence $(u_n)$ with the initial term $u_0 = 1$ and the recursive formula $u_...

SequencesLimitsArithmetic SequencesRecursive Formula
2025/4/14

We are given a function $f(x)$ defined piecewise as: $f(x) = x + \sqrt{1-x^2}$ for $x \in [-1, 1]$ $...

FunctionsDomainContinuityDifferentiabilityDerivativesVariation TableCurve Sketching
2025/4/14

We are given two sequences $(U_n)$ and $(V_n)$ defined by the following relations: $U_0 = -\frac{3}{...

SequencesGeometric SequencesConvergenceSeries
2025/4/14

We are given a sequence $(U_n)_{n \in \mathbb{N}}$ defined by $U_0 = 1$ and $U_{n+1} = \frac{1}{2} U...

SequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

We are given a sequence $(U_n)_{n \in N}$ defined by $U_0 = 7$ and $U_{n+1} = \frac{1}{2}(U_n + 5)$....

SequencesSeriesGeometric SequencesConvergenceBoundedness
2025/4/14

The problem asks us to determine the derivative of the function $y = \cos x$.

CalculusDifferentiationTrigonometryDerivatives
2025/4/14

We need to evaluate the definite integral: $\int_{-2}^{3} \frac{(x-2)(6x^2 - x - 2)}{(2x+1)} dx$.

Definite IntegralIntegrationPolynomialsCalculus
2025/4/13

The problem asks us to find the value of $l$ if $\int x^2 \, dx = lx + \frac{x^3}{3} + c$, where $c$...

IntegrationDefinite IntegralsCalculusPower Rule
2025/4/13

We are given a set of questions about functions and continuity. We need to find the answers to these...

ContinuityLimitsTrigonometric FunctionsCalculus
2025/4/13

We need to evaluate the definite integral: $\int_{0}^{+\infty} \frac{e^{ax} - e^{bx}}{(1 + e^{ax})(1...

Definite IntegralCalculusIntegration TechniquesExponential Functions
2025/4/12