We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. $\lim_{x\to -\infty} (x + \sqrt{x^2 + 9})$

AnalysisLimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

1. Problem Description

We need to find the limit of the function x+x2+9x + \sqrt{x^2 + 9} as xx approaches negative infinity.
limx(x+x2+9)\lim_{x\to -\infty} (x + \sqrt{x^2 + 9})

2. Solution Steps

To evaluate the limit, we can multiply the expression by the conjugate and divide by the same conjugate. The conjugate of x+x2+9x + \sqrt{x^2 + 9} is xx2+9x - \sqrt{x^2 + 9}.
limx(x+x2+9)=limx(x+x2+9)(xx2+9)(xx2+9)\lim_{x\to -\infty} (x + \sqrt{x^2 + 9}) = \lim_{x\to -\infty} \frac{(x + \sqrt{x^2 + 9})(x - \sqrt{x^2 + 9})}{(x - \sqrt{x^2 + 9})}
=limxx2(x2+9)xx2+9= \lim_{x\to -\infty} \frac{x^2 - (x^2 + 9)}{x - \sqrt{x^2 + 9}}
=limx9xx2+9= \lim_{x\to -\infty} \frac{-9}{x - \sqrt{x^2 + 9}}
We can factor out xx from the square root. Since xx \to -\infty, x2=x=x\sqrt{x^2} = |x| = -x.
x2+9=x2(1+9x2)=x1+9x2=x1+9x2\sqrt{x^2 + 9} = \sqrt{x^2(1 + \frac{9}{x^2})} = |x|\sqrt{1 + \frac{9}{x^2}} = -x\sqrt{1 + \frac{9}{x^2}}
Substitute this back into the limit:
limx9x(x1+9x2)=limx9x+x1+9x2\lim_{x\to -\infty} \frac{-9}{x - (-x\sqrt{1 + \frac{9}{x^2}})} = \lim_{x\to -\infty} \frac{-9}{x + x\sqrt{1 + \frac{9}{x^2}}}
=limx9x(1+1+9x2)= \lim_{x\to -\infty} \frac{-9}{x(1 + \sqrt{1 + \frac{9}{x^2}})}
As xx \to -\infty, 9x20\frac{9}{x^2} \to 0. Therefore, 1+9x21+0=1\sqrt{1 + \frac{9}{x^2}} \to \sqrt{1 + 0} = 1.
So we have:
limx9x(1+1)=limx92x\lim_{x\to -\infty} \frac{-9}{x(1 + 1)} = \lim_{x\to -\infty} \frac{-9}{2x}
As xx approaches negative infinity, 92x\frac{-9}{2x} approaches

0. $\lim_{x\to -\infty} \frac{-9}{2x} = 0$

3. Final Answer

0

Related problems in "Analysis"

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi...

CalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29