The problem asks us to find the slope of the tangent line to the polar curves at $\theta = \frac{\pi}{3}$ for the following curves: (a) $r = 2\cos\theta$ (c) $r = \sin(2\theta)$

AnalysisCalculusPolar CoordinatesDerivativesTangent Lines
2025/6/1

1. Problem Description

The problem asks us to find the slope of the tangent line to the polar curves at θ=π3\theta = \frac{\pi}{3} for the following curves:
(a) r=2cosθr = 2\cos\theta
(c) r=sin(2θ)r = \sin(2\theta)

2. Solution Steps

The slope of the tangent line to a polar curve r=f(θ)r = f(\theta) is given by the formula:
dydx=dydθdxdθ=ddθ(rsinθ)ddθ(rcosθ)=drdθsinθ+rcosθdrdθcosθrsinθ\frac{dy}{dx} = \frac{\frac{dy}{d\theta}}{\frac{dx}{d\theta}} = \frac{\frac{d}{d\theta}(r\sin\theta)}{\frac{d}{d\theta}(r\cos\theta)} = \frac{\frac{dr}{d\theta}\sin\theta + r\cos\theta}{\frac{dr}{d\theta}\cos\theta - r\sin\theta}
(a) r=2cosθr = 2\cos\theta
drdθ=2sinθ\frac{dr}{d\theta} = -2\sin\theta
Then we have:
dydx=2sinθsinθ+2cosθcosθ2sinθcosθ2cosθsinθ=2(cos2θsin2θ)4sinθcosθ=2cos(2θ)2sin(2θ)=cot(2θ)\frac{dy}{dx} = \frac{-2\sin\theta \sin\theta + 2\cos\theta\cos\theta}{-2\sin\theta\cos\theta - 2\cos\theta\sin\theta} = \frac{2(\cos^2\theta - \sin^2\theta)}{-4\sin\theta\cos\theta} = \frac{2\cos(2\theta)}{-2\sin(2\theta)} = -\cot(2\theta)
At θ=π3\theta = \frac{\pi}{3}, we have 2θ=2π32\theta = \frac{2\pi}{3}, so
dydx=cot(2π3)=(13)=13=33\frac{dy}{dx} = -\cot\left(\frac{2\pi}{3}\right) = -\left(-\frac{1}{\sqrt{3}}\right) = \frac{1}{\sqrt{3}} = \frac{\sqrt{3}}{3}
(c) r=sin(2θ)r = \sin(2\theta)
drdθ=2cos(2θ)\frac{dr}{d\theta} = 2\cos(2\theta)
Then we have:
dydx=2cos(2θ)sinθ+sin(2θ)cosθ2cos(2θ)cosθsin(2θ)sinθ\frac{dy}{dx} = \frac{2\cos(2\theta)\sin\theta + \sin(2\theta)\cos\theta}{2\cos(2\theta)\cos\theta - \sin(2\theta)\sin\theta}
At θ=π3\theta = \frac{\pi}{3}, we have 2θ=2π32\theta = \frac{2\pi}{3}. Thus sinθ=32\sin\theta = \frac{\sqrt{3}}{2}, cosθ=12\cos\theta = \frac{1}{2}, sin(2θ)=sin(2π3)=32\sin(2\theta) = \sin(\frac{2\pi}{3}) = \frac{\sqrt{3}}{2}, and cos(2θ)=cos(2π3)=12\cos(2\theta) = \cos(\frac{2\pi}{3}) = -\frac{1}{2}.
dydx=2(12)(32)+32(12)2(12)(12)32(32)=32+341234=3454=35\frac{dy}{dx} = \frac{2(-\frac{1}{2})(\frac{\sqrt{3}}{2}) + \frac{\sqrt{3}}{2}(\frac{1}{2})}{2(-\frac{1}{2})(\frac{1}{2}) - \frac{\sqrt{3}}{2}(\frac{\sqrt{3}}{2})} = \frac{-\frac{\sqrt{3}}{2} + \frac{\sqrt{3}}{4}}{-\frac{1}{2} - \frac{3}{4}} = \frac{-\frac{\sqrt{3}}{4}}{-\frac{5}{4}} = \frac{\sqrt{3}}{5}

3. Final Answer

(a) 33\frac{\sqrt{3}}{3}
(c) 35\frac{\sqrt{3}}{5}

Related problems in "Analysis"

We need to find the limit of the function $x + \sqrt{x^2 + 9}$ as $x$ approaches negative infinity. ...

LimitsFunctionsCalculusInfinite LimitsConjugate
2025/6/2

The problem asks to evaluate the definite integral $\int_{2}^{4} \sqrt{x-2} \, dx$.

Definite IntegralIntegrationPower RuleCalculus
2025/6/2

The problem asks us to find the derivative of the function $y = \sqrt{\sin^{-1}(x)}$.

DerivativesChain RuleInverse Trigonometric Functions
2025/6/2

We are asked to change the given integral to polar coordinates and then evaluate it. The given integ...

Multiple IntegralsChange of VariablesPolar CoordinatesIntegration Techniques
2025/5/30

We are asked to evaluate the triple integral $\int_{0}^{\log 2} \int_{0}^{x} \int_{0}^{x+y} e^{x+y+z...

Multiple IntegralsTriple IntegralIntegration
2025/5/29

We need to find the limit of the given expression as $x$ approaches infinity: $\lim_{x \to \infty} \...

LimitsCalculusAsymptotic Analysis
2025/5/29

We are asked to find the limit of the expression $\frac{2x - \sqrt{2x^2 - 1}}{4x - 3\sqrt{x^2 + 2}}$...

LimitsCalculusRationalizationAlgebraic Manipulation
2025/5/29

We are asked to find the limit of the given expression as $x$ approaches infinity: $\lim_{x\to\infty...

LimitsCalculusSequences and SeriesRational Functions
2025/5/29

The problem asks us to find the limit as $x$ approaches infinity of the expression $\frac{2x - \sqrt...

LimitsCalculusAlgebraic ManipulationRationalizationSequences and Series
2025/5/29

We are asked to evaluate the following limit: $\lim_{x \to 1} \frac{x^3 - 2x + 1}{x^2 + 4x - 5}$.

LimitsCalculusPolynomial FactorizationIndeterminate Forms
2025/5/29