To evaluate the definite integral, we first find the indefinite integral of x−2. Let u=x−2. Then du=dx. The indefinite integral becomes: ∫x−2dx=∫udu=∫u1/2du. Using the power rule for integration, ∫xndx=n+1xn+1+C, we have: ∫u1/2du=(1/2)+1u(1/2)+1+C=3/2u3/2+C=32u3/2+C. Substituting u=x−2 back into the expression, we get: ∫x−2dx=32(x−2)3/2+C. Now, we evaluate the definite integral:
∫24x−2dx=[32(x−2)3/2]24=32(4−2)3/2−32(2−2)3/2=32(2)3/2−32(0)3/2=32(22)−0=342.