We are given two sequences $(U_n)_{n \in \mathbb{N}}$ and $(V_n)_{n \in \mathbb{N}}$ defined by the relations: $U_0 = -\frac{3}{2}$ and $U_{n+1} = \frac{2}{3}U_n - 1$ $V_n = 2U_n + a$ 1. Determine the value of $a$ for which the sequence $(V_n)_{n \in \mathbb{N}}$ is a geometric sequence. Specify its common ratio $q$ and its first term $V_0$.

AlgebraSequencesSeriesGeometric SequencesConvergenceLimits
2025/4/14

1. Problem Description

We are given two sequences (Un)nN(U_n)_{n \in \mathbb{N}} and (Vn)nN(V_n)_{n \in \mathbb{N}} defined by the relations:
U0=32U_0 = -\frac{3}{2} and Un+1=23Un1U_{n+1} = \frac{2}{3}U_n - 1
Vn=2Un+aV_n = 2U_n + a

1. Determine the value of $a$ for which the sequence $(V_n)_{n \in \mathbb{N}}$ is a geometric sequence. Specify its common ratio $q$ and its first term $V_0$.

2. Set $a = 6$. Express $V_n$ and $U_n$ as functions of $n$.

3. Show that the sequence $(U_n)_{n \in \mathbb{N}}$ is decreasing on $\mathbb{N}$.

4. Express the following sums as functions of $n$: $S_n = V_0 + V_1 + V_2 + \dots + V_n$ and $S'_n = U_0 + U_1 + U_2 + \dots + U_n$.

5. Study the convergence of the sequence $(S'_n)_{n \in \mathbb{N}}$.

6. Solution Steps

7. For $(V_n)$ to be geometric, we need $V_{n+1} = qV_n$ for some constant $q$.

Vn+1=2Un+1+a=2(23Un1)+a=43Un2+aV_{n+1} = 2U_{n+1} + a = 2(\frac{2}{3}U_n - 1) + a = \frac{4}{3}U_n - 2 + a
qVn=q(2Un+a)=2qUn+aqqV_n = q(2U_n + a) = 2qU_n + aq
Equating the two expressions for Vn+1=qVnV_{n+1} = qV_n:
43Un2+a=2qUn+aq\frac{4}{3}U_n - 2 + a = 2qU_n + aq
For this equation to hold for all nn, the coefficients of UnU_n must be equal, and the constant terms must be equal.
43=2q\frac{4}{3} = 2q which implies q=23q = \frac{2}{3}
2+a=aq=a(23)-2 + a = aq = a(\frac{2}{3}) which implies 2+a=23a-2 + a = \frac{2}{3}a
13a=2\frac{1}{3}a = 2 which implies a=6a = 6
V0=2U0+a=2(32)+6=3+6=3V_0 = 2U_0 + a = 2(-\frac{3}{2}) + 6 = -3 + 6 = 3

2. With $a = 6$, we have $V_n = 2U_n + 6$ and $U_{n+1} = \frac{2}{3}U_n - 1$. Since we have shown that $V_n$ is a geometric sequence, we have $V_n = V_0 q^n = 3(\frac{2}{3})^n$.

Vn=2Un+6=3(23)nV_n = 2U_n + 6 = 3(\frac{2}{3})^n
2Un=3(23)n62U_n = 3(\frac{2}{3})^n - 6
Un=32(23)n3U_n = \frac{3}{2}(\frac{2}{3})^n - 3

3. To show that $(U_n)$ is decreasing, we must show that $U_{n+1} - U_n < 0$ for all $n$.

Un+1Un=(32(23)n+13)(32(23)n3)=32(23)n+132(23)n=32(23)n(231)=32(23)n(13)=12(23)nU_{n+1} - U_n = (\frac{3}{2}(\frac{2}{3})^{n+1} - 3) - (\frac{3}{2}(\frac{2}{3})^n - 3) = \frac{3}{2}(\frac{2}{3})^{n+1} - \frac{3}{2}(\frac{2}{3})^n = \frac{3}{2}(\frac{2}{3})^n(\frac{2}{3} - 1) = \frac{3}{2}(\frac{2}{3})^n(-\frac{1}{3}) = -\frac{1}{2}(\frac{2}{3})^n
Since (23)n>0(\frac{2}{3})^n > 0 for all nn, we have Un+1Un=12(23)n<0U_{n+1} - U_n = -\frac{1}{2}(\frac{2}{3})^n < 0. Therefore, (Un)(U_n) is a decreasing sequence.

4. $S_n = V_0 + V_1 + \dots + V_n$. Since $V_n$ is a geometric sequence, we can use the formula for the sum of a geometric series:

Sn=V01qn+11q=31(23)n+1123=31(23)n+113=9(1(23)n+1)=99(23)n+1S_n = V_0 \frac{1 - q^{n+1}}{1 - q} = 3 \frac{1 - (\frac{2}{3})^{n+1}}{1 - \frac{2}{3}} = 3 \frac{1 - (\frac{2}{3})^{n+1}}{\frac{1}{3}} = 9(1 - (\frac{2}{3})^{n+1}) = 9 - 9(\frac{2}{3})^{n+1}
Sn=U0+U1++Un=k=0nUk=k=0n(32(23)k3)=32k=0n(23)kk=0n3=321(23)n+11233(n+1)=321(23)n+1133n3=92(1(23)n+1)3n3=9292(23)n+13n3=3292(23)n+13nS'_n = U_0 + U_1 + \dots + U_n = \sum_{k=0}^n U_k = \sum_{k=0}^n (\frac{3}{2}(\frac{2}{3})^k - 3) = \frac{3}{2}\sum_{k=0}^n (\frac{2}{3})^k - \sum_{k=0}^n 3 = \frac{3}{2}\frac{1 - (\frac{2}{3})^{n+1}}{1 - \frac{2}{3}} - 3(n+1) = \frac{3}{2} \frac{1 - (\frac{2}{3})^{n+1}}{\frac{1}{3}} - 3n - 3 = \frac{9}{2}(1 - (\frac{2}{3})^{n+1}) - 3n - 3 = \frac{9}{2} - \frac{9}{2}(\frac{2}{3})^{n+1} - 3n - 3 = \frac{3}{2} - \frac{9}{2}(\frac{2}{3})^{n+1} - 3n

5. To study the convergence of the sequence $(S'_n)_{n \in \mathbb{N}}$, we look at the limit as $n$ approaches infinity:

limnSn=limn(3292(23)n+13n)\lim_{n \to \infty} S'_n = \lim_{n \to \infty} (\frac{3}{2} - \frac{9}{2}(\frac{2}{3})^{n+1} - 3n)
Since limn(23)n+1=0\lim_{n \to \infty} (\frac{2}{3})^{n+1} = 0, the term 92(23)n+1\frac{9}{2}(\frac{2}{3})^{n+1} goes to 0 as nn approaches infinity. However, the term 3n-3n goes to -\infty as nn approaches infinity. Therefore, limnSn=\lim_{n \to \infty} S'_n = -\infty.
The sequence (Sn)nN(S'_n)_{n \in \mathbb{N}} diverges to -\infty.

6. Final Answer

7. $a = 6$, $q = \frac{2}{3}$, $V_0 = 3$.

8. $V_n = 3(\frac{2}{3})^n$, $U_n = \frac{3}{2}(\frac{2}{3})^n - 3$.

9. The sequence $(U_n)$ is decreasing.

1

0. $S_n = 9 - 9(\frac{2}{3})^{n+1}$, $S'_n = \frac{3}{2} - \frac{9}{2}(\frac{2}{3})^{n+1} - 3n$.

1

1. The sequence $(S'_n)$ diverges to $-\infty$.