First, we can factor out a 3 from both terms:
3x6+81y6=3(x6+27y6) Notice that x6=(x2)3 and 27y6=(3y2)3. We can use the sum of cubes formula: a3+b3=(a+b)(a2−ab+b2) In this case, a=x2 and b=3y2. Substituting these values into the formula, we have: x6+27y6=(x2)3+(3y2)3=(x2+3y2)((x2)2−(x2)(3y2)+(3y2)2) x6+27y6=(x2+3y2)(x4−3x2y2+9y4) Substituting this back into the original expression:
3(x6+27y6)=3(x2+3y2)(x4−3x2y2+9y4)