We are asked to expand the expression $(7 + \sqrt{3x})^2$.AlgebraAlgebraic ExpansionSquare of a BinomialRadicals2025/4/141. Problem DescriptionWe are asked to expand the expression (7+3x)2(7 + \sqrt{3x})^2(7+3x)2.2. Solution StepsWe can use the formula (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2(a+b)2=a2+2ab+b2.In our case, a=7a = 7a=7 and b=3xb = \sqrt{3x}b=3x.(a+b)2=a2+2ab+b2 (a+b)^2 = a^2 + 2ab + b^2 (a+b)2=a2+2ab+b2(7+3x)2=72+2(7)(3x)+(3x)2 (7 + \sqrt{3x})^2 = 7^2 + 2(7)(\sqrt{3x}) + (\sqrt{3x})^2 (7+3x)2=72+2(7)(3x)+(3x)2=49+143x+3x = 49 + 14\sqrt{3x} + 3x =49+143x+3xTherefore, the expanded expression is 49+143x+3x49 + 14\sqrt{3x} + 3x49+143x+3x.3. Final Answer3x+143x+493x + 14\sqrt{3x} + 493x+143x+49