We are asked to expand the expression $(7 + \sqrt{3x})^2$.

AlgebraAlgebraic ExpansionSquare of a BinomialRadicals
2025/4/14

1. Problem Description

We are asked to expand the expression (7+3x)2(7 + \sqrt{3x})^2.

2. Solution Steps

We can use the formula (a+b)2=a2+2ab+b2(a+b)^2 = a^2 + 2ab + b^2.
In our case, a=7a = 7 and b=3xb = \sqrt{3x}.
(a+b)2=a2+2ab+b2 (a+b)^2 = a^2 + 2ab + b^2
(7+3x)2=72+2(7)(3x)+(3x)2 (7 + \sqrt{3x})^2 = 7^2 + 2(7)(\sqrt{3x}) + (\sqrt{3x})^2
=49+143x+3x = 49 + 14\sqrt{3x} + 3x
Therefore, the expanded expression is 49+143x+3x49 + 14\sqrt{3x} + 3x.

3. Final Answer

3x+143x+493x + 14\sqrt{3x} + 49