The problem asks us to simplify the given expressions by removing the brackets. The expressions are: (a) $(a4^3)^2$ (b) $(x^5)^3$ (c) $(a^2b^3)^4$ (d) $a^2(a^3 + a^5)$ (e) $2x^4(3x - 5x^7)$ (f) $m^2(1 - m) - 2m(m + 2m^2)$ (g) $ab(a^2 + ab - b^2)$

AlgebraExponentsPolynomialsSimplificationAlgebraic Expressions
2025/4/16

1. Problem Description

The problem asks us to simplify the given expressions by removing the brackets. The expressions are:
(a) (a43)2(a4^3)^2
(b) (x5)3(x^5)^3
(c) (a2b3)4(a^2b^3)^4
(d) a2(a3+a5)a^2(a^3 + a^5)
(e) 2x4(3x5x7)2x^4(3x - 5x^7)
(f) m2(1m)2m(m+2m2)m^2(1 - m) - 2m(m + 2m^2)
(g) ab(a2+abb2)ab(a^2 + ab - b^2)

2. Solution Steps

(a) (a43)2=(a64)2=(64a)2=642a2=4096a2(a4^3)^2 = (a \cdot 64)^2 = (64a)^2 = 64^2 \cdot a^2 = 4096a^2
(b) (x5)3(x^5)^3
(xa)b=xab(x^a)^b = x^{a \cdot b}
(x5)3=x53=x15(x^5)^3 = x^{5 \cdot 3} = x^{15}
(c) (a2b3)4(a^2b^3)^4
(ab)c=acbc(ab)^c = a^c b^c
(a2b3)4=(a2)4(b3)4=a24b34=a8b12(a^2b^3)^4 = (a^2)^4 (b^3)^4 = a^{2 \cdot 4} b^{3 \cdot 4} = a^8b^{12}
(d) a2(a3+a5)a^2(a^3 + a^5)
a(b+c)=ab+aca(b+c) = ab + ac
a2(a3+a5)=a2a3+a2a5=a2+3+a2+5=a5+a7a^2(a^3 + a^5) = a^2 \cdot a^3 + a^2 \cdot a^5 = a^{2+3} + a^{2+5} = a^5 + a^7
(e) 2x4(3x5x7)2x^4(3x - 5x^7)
2x4(3x5x7)=2x43x2x45x7=6x4+110x4+7=6x510x112x^4(3x - 5x^7) = 2x^4 \cdot 3x - 2x^4 \cdot 5x^7 = 6x^{4+1} - 10x^{4+7} = 6x^5 - 10x^{11}
(f) m2(1m)2m(m+2m2)m^2(1 - m) - 2m(m + 2m^2)
m2(1m)2m(m+2m2)=m21m2m(2mm+2m2m2)=m2m3(2m2+4m3)=m2m32m24m3=(m22m2)+(m34m3)=m25m3m^2(1 - m) - 2m(m + 2m^2) = m^2 \cdot 1 - m^2 \cdot m - (2m \cdot m + 2m \cdot 2m^2) = m^2 - m^3 - (2m^2 + 4m^3) = m^2 - m^3 - 2m^2 - 4m^3 = (m^2 - 2m^2) + (-m^3 - 4m^3) = -m^2 - 5m^3
(g) ab(a2+abb2)ab(a^2 + ab - b^2)
ab(a2+abb2)=aba2+abababb2=a3b+a2b2ab3ab(a^2 + ab - b^2) = ab \cdot a^2 + ab \cdot ab - ab \cdot b^2 = a^3b + a^2b^2 - ab^3

3. Final Answer

(a) 4096a24096a^2
(b) x15x^{15}
(c) a8b12a^8b^{12}
(d) a5+a7a^5 + a^7
(e) 6x510x116x^5 - 10x^{11}
(f) m25m3-m^2 - 5m^3
(g) a3b+a2b2ab3a^3b + a^2b^2 - ab^3

Related problems in "Algebra"

The problem is to solve the equation $5|3-x| - 51 = 4$ for $x$. This involves isolating the absolute...

Absolute Value EquationsSolving Equations
2025/4/17

The problem is to solve the linear equation $4(x - 2) + 5x = 9x + 8$ for $x$.

Linear EquationsSolving Equations
2025/4/17

The problem presents a sequence of numbers: $-6, -7.2, -8.64, -10.368, ...$. We need to determine th...

SequencesGeometric SequenceSeriesFormulaCommon Ratio
2025/4/17

We are given a sequence $(U_n)$ defined by the initial term $U_0 = 1$ and the recursive relation $3U...

SequencesSeriesGeometric SequenceConvergence
2025/4/17

Given the matrix $A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 0 \\ -1 & 2 & 3 \end{pmatrix}$, we need t...

Linear AlgebraMatricesDeterminantsInverse MatrixSystem of Equations
2025/4/17

We are given a system of two linear equations with two variables, $x$ and $y$. We need to solve for ...

Linear EquationsSystems of EquationsElimination MethodSolving Equations
2025/4/17

Simplify the expression $\frac{4^{x+1} \times 8^{2x}}{2^{x+3}}$.

ExponentsSimplificationAlgebraic Manipulation
2025/4/17

We are asked to simplify the expression $\frac{4^{x+1} \times 8^{2x}}{2^{x+3}}$.

ExponentsSimplificationAlgebraic Manipulation
2025/4/17

We are given a system of two linear equations with two variables, $x$ and $y$. The system is: $\frac...

Linear EquationsSystems of EquationsSolving Equations
2025/4/17

The problem is to solve for $x$ and $y$ in the equation $\frac{1}{2}x + \frac{3}{4}y = 5$. However,...

Linear EquationsSolving EquationsSystems of EquationsVariable Isolation
2025/4/17