The problem involves a polynomial $F(x, y, z) = x^3 + y^3 + z^3 - 3xyz$. (a) We need to show that $F(x, y, z)$ is a cyclic expression. (b) We need to factorize $F(x, y, z)$. If $F(x, y, z) = 0$ and $(x + y + z) \ne 0$, we need to show that $x^2 + y^2 + z^2 = xy + yz + zx$. (c) If $x = b + c - a$, $y = c + a - b$, and $z = a + b - c$, we need to show that $F(a, b, c) : F(x, y, z) = 1 : 4$.

AlgebraPolynomialsFactorizationCyclic ExpressionsAlgebraic Manipulation
2025/4/18

1. Problem Description

The problem involves a polynomial F(x,y,z)=x3+y3+z33xyzF(x, y, z) = x^3 + y^3 + z^3 - 3xyz.
(a) We need to show that F(x,y,z)F(x, y, z) is a cyclic expression.
(b) We need to factorize F(x,y,z)F(x, y, z). If F(x,y,z)=0F(x, y, z) = 0 and (x+y+z)0(x + y + z) \ne 0, we need to show that x2+y2+z2=xy+yz+zxx^2 + y^2 + z^2 = xy + yz + zx.
(c) If x=b+cax = b + c - a, y=c+aby = c + a - b, and z=a+bcz = a + b - c, we need to show that F(a,b,c):F(x,y,z)=1:4F(a, b, c) : F(x, y, z) = 1 : 4.

2. Solution Steps

(a) To show that F(x,y,z)F(x, y, z) is a cyclic expression, we need to show that F(y,z,x)=F(x,y,z)F(y, z, x) = F(x, y, z).
F(y,z,x)=y3+z3+x33yzx=x3+y3+z33xyz=F(x,y,z)F(y, z, x) = y^3 + z^3 + x^3 - 3yzx = x^3 + y^3 + z^3 - 3xyz = F(x, y, z).
Thus, F(x,y,z)F(x, y, z) is a cyclic expression.
(b) Factorization of F(x,y,z)F(x, y, z):
F(x,y,z)=x3+y3+z33xyz=(x+y+z)(x2+y2+z2xyyzzx)F(x, y, z) = x^3 + y^3 + z^3 - 3xyz = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx).
Given that F(x,y,z)=0F(x, y, z) = 0 and x+y+z0x + y + z \ne 0, we have:
(x+y+z)(x2+y2+z2xyyzzx)=0(x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx) = 0.
Since x+y+z0x + y + z \ne 0, it implies that x2+y2+z2xyyzzx=0x^2 + y^2 + z^2 - xy - yz - zx = 0.
Therefore, x2+y2+z2=xy+yz+zxx^2 + y^2 + z^2 = xy + yz + zx.
(c) Given x=b+cax = b + c - a, y=c+aby = c + a - b, and z=a+bcz = a + b - c.
x+y+z=(b+ca)+(c+ab)+(a+bc)=a+b+cx + y + z = (b + c - a) + (c + a - b) + (a + b - c) = a + b + c.
F(x,y,z)=(x+y+z)(x2+y2+z2xyyzzx)F(x, y, z) = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx).
F(a,b,c)=a3+b3+c33abcF(a, b, c) = a^3 + b^3 + c^3 - 3abc.
F(a,b,c)=(a+b+c)(a2+b2+c2abbcca)F(a, b, c) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca).
Let's calculate F(x,y,z)F(x, y, z) with given x,y,zx, y, z.
x+y+z=a+b+cx + y + z = a + b + c.
Now, we calculate x2+y2+z2xyyzzxx^2 + y^2 + z^2 - xy - yz - zx.
x2+y2+z2=(b+ca)2+(c+ab)2+(a+bc)2x^2 + y^2 + z^2 = (b + c - a)^2 + (c + a - b)^2 + (a + b - c)^2
=b2+c2+a2+2bc2ab2ac+c2+a2+b2+2ca2bc2ab+a2+b2+c2+2ab2ac2bc= b^2 + c^2 + a^2 + 2bc - 2ab - 2ac + c^2 + a^2 + b^2 + 2ca - 2bc - 2ab + a^2 + b^2 + c^2 + 2ab - 2ac - 2bc
=3(a2+b2+c2)2(ab+bc+ca)= 3(a^2 + b^2 + c^2) - 2(ab + bc + ca)
xy+yz+zx=(b+ca)(c+ab)+(c+ab)(a+bc)+(a+bc)(b+ca)xy + yz + zx = (b + c - a)(c + a - b) + (c + a - b)(a + b - c) + (a + b - c)(b + c - a)
=bc+abb2+c2+acbcaca2+ab+ac+abc2+a2+bcacbcb2+c2ab= bc + ab - b^2 + c^2 + ac - bc - ac - a^2 + ab + ac + ab - c^2 + a^2 + bc - ac - bc - b^2 + c^2 - ab
=ab+bc+caa2b2c2+a2+b2+c2=2(ab+bc+ac)(a2+b2+c2)(a2+b2+c2)+ab+bc+ca= ab + bc + ca - a^2 - b^2 - c^2 + a^2 + b^2 + c^2 = 2(ab + bc + ac) - (a^2 + b^2 + c^2) - (a^2+b^2+c^2) + ab+bc+ca.
xy+yz+zx=(b+ca)(c+ab)+(c+ab)(a+bc)+(a+bc)(b+ca)=a2b2c2+2ab+2bc+2ca=(a2+b2+c2)+2(ab+bc+ca)xy + yz + zx = (b+c-a)(c+a-b) + (c+a-b)(a+b-c) + (a+b-c)(b+c-a) = -a^2 - b^2 - c^2 + 2ab + 2bc + 2ca = -(a^2 + b^2 + c^2) + 2(ab+bc+ca)
x2+y2+z2(xy+yz+zx)=3(a2+b2+c2)2(ab+bc+ca)[(a2+b2+c2)+2(ab+bc+ca)]=4(a2+b2+c2)4(ab+bc+ca)=4[a2+b2+c2(ab+bc+ca)]x^2 + y^2 + z^2 - (xy+yz+zx) = 3(a^2 + b^2 + c^2) - 2(ab + bc + ca) - [-(a^2 + b^2 + c^2) + 2(ab+bc+ca)] = 4(a^2 + b^2 + c^2) - 4(ab + bc + ca) = 4[a^2 + b^2 + c^2 - (ab + bc + ca)].
F(x,y,z)=(a+b+c)[4(a2+b2+c2abbcca)]=4(a+b+c)(a2+b2+c2abbcca)F(x, y, z) = (a + b + c) [4(a^2 + b^2 + c^2 - ab - bc - ca)] = 4(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca).
F(a,b,c)=(a+b+c)(a2+b2+c2abbcca)F(a, b, c) = (a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca).
F(a,b,c)/F(x,y,z)=[(a+b+c)(a2+b2+c2abbcca)]/[4(a+b+c)(a2+b2+c2abbcca)]=1/4F(a, b, c) / F(x, y, z) = [(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)] / [4(a + b + c)(a^2 + b^2 + c^2 - ab - bc - ca)] = 1 / 4.
Therefore, F(a,b,c):F(x,y,z)=1:4F(a, b, c) : F(x, y, z) = 1 : 4.

3. Final Answer

(a) F(x,y,z)F(x, y, z) is a cyclic expression.
(b) F(x,y,z)=(x+y+z)(x2+y2+z2xyyzzx)F(x, y, z) = (x + y + z)(x^2 + y^2 + z^2 - xy - yz - zx). If F(x,y,z)=0F(x, y, z) = 0 and (x+y+z)0(x + y + z) \ne 0, then x2+y2+z2=xy+yz+zxx^2 + y^2 + z^2 = xy + yz + zx.
(c) F(a,b,c):F(x,y,z)=1:4F(a, b, c) : F(x, y, z) = 1 : 4.

Related problems in "Algebra"

We are given a system of two linear equations with two variables, $x$ and $y$. We need to find the v...

Linear EquationsSystems of EquationsElimination MethodVariables
2025/4/19

Solve the following system of linear equations: $6x - 3y = 39$ $-3x - 8y = 39$

Linear EquationsSystems of EquationsElimination Method
2025/4/19

We need to solve the quadratic equation $7x^2 - 6x - 3 = 0$ for $x$.

Quadratic EquationsQuadratic FormulaRoots of EquationsAlgebra
2025/4/19

We need to solve the equation $123 + (3x - 9)^2 = 323$ for $x$.

Quadratic EquationsSolving EquationsSquare Roots
2025/4/19

Solve for $x$ in the equation $123 + (3x - 9)^2 = 323$.

Quadratic EquationsSolving EquationsSquare Roots
2025/4/18

The problem is to solve for $x$ in the equation $5|3-x|-51 = 4$.

Absolute Value EquationsSolving Equations
2025/4/18

The problem requires us to write a piecewise function that represents the monthly charge for electri...

Piecewise FunctionsLinear EquationsModeling
2025/4/18

The problem asks to find the piecewise function that represents the given graph. The graph consists ...

Piecewise FunctionsLinear EquationsCoordinate GeometrySlopePoint-Slope Form
2025/4/18

We are given a piecewise function: $f(x) = \begin{cases} x-1, & x < n \\ -x+4, & x \ge n \end{cases}...

Piecewise FunctionsRangeFunctionsInequalitiesFunction Analysis
2025/4/18

The problem asks us to find the x-intercept(s) and y-intercept(s) of the piecewise-defined function ...

FunctionsPiecewise FunctionsInterceptsGraphing
2025/4/18