We are given a circle $PQRS$ with center $O$. We are also given that $\angle UQR = 68^\circ$, $\angle TPS = 74^\circ$, and $\angle QSR = 40^\circ$. We need to find the value of $\angle PRS$.

GeometryCircle GeometryCyclic QuadrilateralAnglesExterior Angle Theorem
2025/4/19

1. Problem Description

We are given a circle PQRSPQRS with center OO. We are also given that UQR=68\angle UQR = 68^\circ, TPS=74\angle TPS = 74^\circ, and QSR=40\angle QSR = 40^\circ. We need to find the value of PRS\angle PRS.

2. Solution Steps

First, we know that the exterior angle of a cyclic quadrilateral is equal to the interior opposite angle. Thus SPQ=UQR=68\angle SPQ = \angle UQR = 68^\circ.
Also, RPQ=180TPS=18074=106\angle RPQ = 180^\circ - \angle TPS = 180^\circ - 74^\circ = 106^\circ. This is because TPS\angle TPS is the exterior angle of cyclic quadrilateral PQRSPQRS at vertex PP.
SPQ=SPR+RPQ=68\angle SPQ = \angle SPR + \angle RPQ = 68^\circ is incorrect. It should be SPQ=SRQ=68\angle SPQ = \angle SRQ = 68^{\circ}
The angle between the tangent and chord is equal to the angle in the alternate segment, so SPQ=SRQ=74\angle SPQ = \angle SRQ = 74^{\circ}.
We also have that TPs=74\angle TPs = 74^{\circ}, so SPQ=18074=106\angle SPQ = 180^{\circ} - 74^{\circ} = 106^{\circ}.
Since the exterior angle equals the opposite interior angle of a cyclic quadrilateral, SRQ=74\angle SRQ = 74^{\circ}.
QSR=40\angle QSR = 40^{\circ}
SRQ=SRQ+QSR=74\angle SRQ = \angle SRQ + \angle QSR = 74^{\circ}
Also PQR=180TPS=18074=106\angle PQR = 180^{\circ} - \angle TPS = 180^{\circ} - 74^{\circ} = 106^{\circ}.
Also, UQR=68\angle UQR = 68^{\circ}, so PQS=18068=112\angle PQS = 180^{\circ} - 68^{\circ} = 112^{\circ}. But this is incorrect since PQUPQU is a straight line. Thus, PQR=18068=112\angle PQR = 180^{\circ} - 68^{\circ} = 112^{\circ}. Then PQS=112RQS\angle PQS = 112^{\circ} - \angle RQS . Also PRS=PQS\angle PRS = \angle PQS.
Since UQR=68\angle UQR = 68^\circ, the exterior angle theorem gives us that PQR+UQR=180\angle PQR + \angle UQR = 180^\circ, hence PQR+68=180\angle PQR + 68^\circ = 180^\circ which means that PQR=18068=112\angle PQR = 180^\circ - 68^\circ = 112^\circ.
Also SPR=SQR\angle SPR = \angle SQR. The angles subtended by the same arc.
PRQ=PSQ\angle PRQ = \angle PSQ.
The sum of the angles in quadrilateral PQRSPQRS is 360360^{\circ}.
SPQ=18074=106\angle SPQ = 180^\circ - 74^\circ = 106^\circ.
SRQ=74\angle SRQ = 74^\circ. QSR=40\angle QSR = 40^{\circ}.
In triangle SQRSQR, SQR+QRS+RSQ=180\angle SQR + \angle QRS + \angle RSQ = 180^\circ.
QRS+40=74\angle QRS + 40^\circ = 74^\circ. So, QRS=34\angle QRS = 34^{\circ}.
PQR=PQS+SQR\angle PQR = \angle PQS + \angle SQR. Thus, SQR=PQRPQS=112PQS\angle SQR = \angle PQR - \angle PQS = 112^{\circ} - \angle PQS .
However, PRS=PQS\angle PRS = \angle PQS since they subtend the same arc PSPS.
Also, PQS=PRS\angle PQS = \angle PRS since they subtend the same arc PSPS.
In the quadrilateral PQRSPQRS, SPQ+PQR+QRS+RSP=360\angle SPQ + \angle PQR + \angle QRS + \angle RSP = 360^\circ
106+112+74+RSP=360106 + 112 + 74 + \angle RSP = 360^\circ.
292+RSP=360292 + \angle RSP = 360^\circ.
RSP=360292=68\angle RSP = 360 - 292 = 68^{\circ}
Since QSR=40\angle QSR = 40^\circ, then PSR=QSR+PSQ=40+PSQ=68\angle PSR = \angle QSR + \angle PSQ = 40 + \angle PSQ = 68^\circ.
PSQ=6840=28\angle PSQ = 68 - 40 = 28^\circ.
Since PSQ=PRQ\angle PSQ = \angle PRQ, then PRQ=28\angle PRQ = 28^\circ.
Now we have QRS=QRP+PRS=34\angle QRS = \angle QRP + \angle PRS = 34^\circ, and PRQ=28\angle PRQ = 28^\circ, then
28+PRS=3428^\circ + \angle PRS = 34^\circ.
So PRS=3428=6\angle PRS = 34 - 28 = 6^\circ.

3. Final Answer

The value of PRS\angle PRS is 66^\circ.

Related problems in "Geometry"

A rectangle $PQRS$ has dimensions $20$ cm by $(10+10)$ cm $= 20$ cm. A square of side $x$ cm is cut ...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The diagram shows a rectangle $PQRS$ with length $10+10=20$ cm and width $20$ cm. A square of side $...

AreaRectangleSquareAlgebraic Equations
2025/4/19

We are given the coordinates of the vertices of a quadrilateral UVWX: $U(6,-2)$, $V(1,3)$, $W(-7,6)$...

Coordinate GeometryQuadrilateralsSlopeDistance FormulaParallelogram
2025/4/19

The problem asks us to find the coordinates of point $D$ such that points $A(-2, 3)$, $B(2, 8)$, $C(...

ParallelogramCoordinate GeometryMidpoint Formula
2025/4/19

The problem requires converting equations from one coordinate system to another. We will solve probl...

Coordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

We have a circle $PQRS$ with center $O$. We are given that $\angle UQR = 68^\circ$, $\angle TPS = 7...

CirclesCyclic QuadrilateralsAnglesGeometric Proofs
2025/4/19

The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical co...

Coordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

We are asked to describe the graphs of the given cylindrical or spherical equations. Problem 7: $r =...

3D GeometryCylindrical CoordinatesSpherical CoordinatesCoordinate SystemsGraphing
2025/4/19

The problem requires converting Cartesian coordinates to cylindrical coordinates. (a) Convert $(2, 2...

Coordinate SystemsCartesian CoordinatesCylindrical CoordinatesCoordinate Transformation3D Geometry
2025/4/19

The problem asks to convert the given spherical coordinates to Cartesian coordinates. (a) The spheri...

Coordinate GeometrySpherical CoordinatesCartesian Coordinates3D GeometryCoordinate Transformation
2025/4/19