The problem requires converting Cartesian coordinates to cylindrical coordinates. (a) Convert $(2, 2, 3)$ from Cartesian to cylindrical coordinates. (b) Convert $(4\sqrt{3}, -4, 6)$ from Cartesian to cylindrical coordinates.

GeometryCoordinate SystemsCartesian CoordinatesCylindrical CoordinatesCoordinate Transformation3D Geometry
2025/4/19

1. Problem Description

The problem requires converting Cartesian coordinates to cylindrical coordinates.
(a) Convert (2,2,3)(2, 2, 3) from Cartesian to cylindrical coordinates.
(b) Convert (43,4,6)(4\sqrt{3}, -4, 6) from Cartesian to cylindrical coordinates.

2. Solution Steps

The conversion from Cartesian coordinates (x,y,z)(x, y, z) to cylindrical coordinates (r,θ,z)(r, \theta, z) is given by:
r=x2+y2r = \sqrt{x^2 + y^2}
θ=arctan(yx)\theta = \arctan(\frac{y}{x})
z=zz = z
(a) For (2,2,3)(2, 2, 3):
x=2x = 2, y=2y = 2, z=3z = 3
r=22+22=4+4=8=22r = \sqrt{2^2 + 2^2} = \sqrt{4 + 4} = \sqrt{8} = 2\sqrt{2}
θ=arctan(22)=arctan(1)=π4\theta = \arctan(\frac{2}{2}) = \arctan(1) = \frac{\pi}{4}
z=3z = 3
So, the cylindrical coordinates are (22,π4,3)(2\sqrt{2}, \frac{\pi}{4}, 3).
(b) For (43,4,6)(4\sqrt{3}, -4, 6):
x=43x = 4\sqrt{3}, y=4y = -4, z=6z = 6
r=(43)2+(4)2=163+16=48+16=64=8r = \sqrt{(4\sqrt{3})^2 + (-4)^2} = \sqrt{16 \cdot 3 + 16} = \sqrt{48 + 16} = \sqrt{64} = 8
θ=arctan(443)=arctan(13)=arctan(33)=π6\theta = \arctan(\frac{-4}{4\sqrt{3}}) = \arctan(-\frac{1}{\sqrt{3}}) = \arctan(-\frac{\sqrt{3}}{3}) = -\frac{\pi}{6}
Since x>0x > 0 and y<0y < 0, the angle is in the fourth quadrant. Therefore, the angle is indeed π6-\frac{\pi}{6}.
z=6z = 6
So, the cylindrical coordinates are (8,π6,6)(8, -\frac{\pi}{6}, 6).

3. Final Answer

(a) The cylindrical coordinates of (2,2,3)(2, 2, 3) are (22,π4,3)(2\sqrt{2}, \frac{\pi}{4}, 3).
(b) The cylindrical coordinates of (43,4,6)(4\sqrt{3}, -4, 6) are (8,π6,6)(8, -\frac{\pi}{6}, 6).

Related problems in "Geometry"

A rectangle $PQRS$ has dimensions $20$ cm by $(10+10)$ cm $= 20$ cm. A square of side $x$ cm is cut ...

AreaRectangleSquareAlgebraic Equations
2025/4/19

The diagram shows a rectangle $PQRS$ with length $10+10=20$ cm and width $20$ cm. A square of side $...

AreaRectangleSquareAlgebraic Equations
2025/4/19

We are given the coordinates of the vertices of a quadrilateral UVWX: $U(6,-2)$, $V(1,3)$, $W(-7,6)$...

Coordinate GeometryQuadrilateralsSlopeDistance FormulaParallelogram
2025/4/19

The problem asks us to find the coordinates of point $D$ such that points $A(-2, 3)$, $B(2, 8)$, $C(...

ParallelogramCoordinate GeometryMidpoint Formula
2025/4/19

The problem requires converting equations from one coordinate system to another. We will solve probl...

Coordinate SystemsCylindrical CoordinatesSpherical CoordinatesCoordinate Transformations
2025/4/19

We have a circle $PQRS$ with center $O$. We are given that $\angle UQR = 68^\circ$, $\angle TPS = 7...

CirclesCyclic QuadrilateralsAnglesGeometric Proofs
2025/4/19

The problem requires converting equations from rectangular coordinates $(x, y, z)$ to cylindrical co...

Coordinate SystemsCoordinate TransformationsCylindrical CoordinatesSpherical Coordinates3D Geometry
2025/4/19

We are asked to describe the graphs of the given cylindrical or spherical equations. Problem 7: $r =...

3D GeometryCylindrical CoordinatesSpherical CoordinatesCoordinate SystemsGraphing
2025/4/19

We are given a circle $PQRS$ with center $O$. We are also given that $\angle UQR = 68^\circ$, $\angl...

Circle GeometryCyclic QuadrilateralAnglesExterior Angle Theorem
2025/4/19

The problem asks to convert the given spherical coordinates to Cartesian coordinates. (a) The spheri...

Coordinate GeometrySpherical CoordinatesCartesian Coordinates3D GeometryCoordinate Transformation
2025/4/19